Storm Impacts Research: Using SENCER-Model Courses to Address Policy

Michelle Ritchie,
Southern Connecticut State University
James Tait,
Southern Connecticut State University

Abstract

Hurricane Irene and Superstorm Sandy caused severe damage to the Connecticut shoreline in 2011 and 2012 respectively. The close temporal succession of the two storms has intensified concerns about rising sea levels and storm intensification attributable to climate change. In response, students at Southern Connecticut State University who have taken a SENCER model course, “Science and the Connecticut Coast,” as well as students from similarly constructed courses that teach environmental science “through” issues of civic consequence, are conducting research on coastal vulnerability with the goal of impacting policy recommendations that could increase the state’s coastal resilience in the face of future storms. The results of these studies suggest that the presence of a wide buffering beach was the most common factor in reducing storm wave damage, and that the characteristics of the storm surge inundation pattern were unexpected. Among the recommendations stem- ming from this research are that management of beach sand become a priority for the state, that management of beach sand be prioritized according to locality and benefit, that the state provide a mechanism for towns to reclaim eroded beach sands that provide a buffer to storm waves, and, finally, that coastal emergency plans include accurate storm tide inundation maps that are accessible to the public.

Introduction

According to the National Council Population Report (NOAA 2013), the Connecticut shoreline has the fifth highest (non-freshwater) coastal population density in the United States and is one of the most intensively developed shorelines in the country. The ratio of the value of total insured coastal county property/km of linear shoreline length for Connecticut is $3.69 billion/km, second only to New York State (AIRWorldwide 2013). In the face of climate change and sea level rise, shoreline properties in Connecticut face increased risk of damage caused by hurricanes and other large storms. This is due in part to poorly informed policies that fail to recognize the regional beach dynamics of Connecticut’s formerly glaciated, fetch-limited shoreline (Tait and Ferrand 2014).

Figure 1. Long Island and Connecticut (Courtesy of GoogleMaps)

In particular, along many parts of the Connecticut shore, communities depend on the presence of sandy beaches to shelter coastal structures and infrastructure from storm damage. While the shoreline is periodically exposed periodically to erosive storm waves, the moderately large, long period swells that rebuild beaches are typically absent due to the sheltering effect of Long Island (Figure 1). As a result, Connecticut’s beaches are chronically erosive.

By connecting students with a multifaceted understanding of Connecticut shorelines and providing hands-on experience with storm damage, the class becomes a site of learning, both inside and outside the university walls. From statistics and coastal processes, to teamwork and presentation skills, SENCER courses in what is now the Department of the Environment, Geography and Marine Sciences at Southern Connecticut State University have become a departure point for students to both conduct coastal research and apply that research to coastal policy analysis.1 After learning important concepts and field and laboratory techniques in formal courses, highly motivated students go on to conduct research as fellows of the Werth Center for Coastal and Marine Studies. It is interesting to note that the students involved in this research are not necessarily science majors but have developed an interest in science as a result of their experiences in these interdisciplinary science courses. Two such courses, “Science and the Connecticut Coast” and “Coastal Processes and Environments,” allow students to experience and understand various coastal environments, their origins, and the processes that shape them, as well as associated environmental issues. Although the focus of this article is research on storm impacts, department coursework and research at the Werth Center also focus on water quality monitoring and coastal sediment pollution by heavy metals.

Figure 2. Cosey Beach. (Courtesy of the Connecticut Department of Energy & Environmental Protection)

Hurricane Sandy moved up the Atlantic coast in late October 2012, interacting with a strong short-wave, mid-latitude cyclone along the way. The combined storms created an extremely large and very low-pressure superstorm with intense winds on the northern side of the cyclone (Grumm and Evanego 2012). These winds, with attendant surge and storm waves, hit the coastal town of East Haven, Connecticut on October 29, 2012. The impacts of Sandy are convolved with those of Hurricane Irene, which had devastated the area just one year earlier in August 2011. While people were still recovering from Irene, Sandy intensified and and spatially extended the damages that already existed. In records of storm damage maintained by the town, specific damages were sometimes not even attributed to a particular storm, a clear indication of the overlapping impact of the two storms (Tait and Ferrand 2014). Superstorm Sandy was generally classified as more intense in terms of maximum storm surge, maximum wind speeds, diameter, and barometric pressure (Fischetti 2012). Prevailing conditions in Connecticut, however, served to moderate the storm’s impact relative to Irene. The storm’s direction shifted west, sending the eye into New Jersey, so that winds along the Connecticut shoreline blew alongshore rather than onshore, which reduced the magnitude of the surge in the East Haven area. Sandy’s forward speed accelerated from approximately 15 mph to 29 mph, so that the storm arrived in the East Haven area earlier than it would have otherwise. According to records from the NOAA New Haven CT tide gauge, Sandy arrived in East Haven at 8:06 p.m., just two hours after a spring low tide, resulting in a storm tide of 8.9 ft (2.7 m) relative to mean sea level, just 7.9 in (20 cm) higher than Irene. If not for these factors, the storm surge would have been higher and would have occurred nearer to a spring high tide, as was previously anticipated. Nevertheless, storm surge inundation, high winds and storm waves caused considerable damage (Figure 2).

To better understand the risk posed to structures and infrastructure, students who had gained research experience in SENCER courses investigated the various controls on wave damage and patterns of inundation in order to assess vulnerability to future storms. The shoreline characteristics investigated with respect to wave impacts included the elevations of houses and roads, beach width and beach erosion patterns, the presence or absence of sea walls, and the amount and types of damage sustained. Spatial patterns of inundation were examined using flood debris deposits, Light Detection and Ranging (LIDAR) data, and Geographic Information Systems (GIS) mapping technology.

Research Activities

Methodology for these studies involved quantitative field observations followed by quantitative laboratory and geospatial analysis. Students were prepared by their classroom experiences to conduct rigorous fieldwork, gather reliable data, analyze the data carefully, and make reasonable interpretations. Collectively, the data constitute a detailed look at various characteristics of the East Haven coastline that contribute to the town’s vulnerability to wave damage and to inundation during large storms. Research activities included construction of coastal road elevation maps, measuring beach profiles and erosion patterns, a house-by-house wave damage assessment, and an inundation map series that included the actual inundation pattern and patterns for other potential scenarios. It should be noted that the research performed by the students has been used in the town of East Haven’s report to FEMA and will be used by the Town Engineering office for future risk assessment.

Wave Damages

Coastal road elevation maps

A series of road elevation maps were generated. Students used a CST/Berger 300-R total station to gather elevation data. The total station uses a modulated infrared laser beam and prism reflector to obtain highly accurate XYZ coordinates, which must then be assigned a coordinate system that includes a known elevation. Previously existing town engineering benchmarks served as points of known elevation. The locations of surveyed elevation points were recorded using geographic positioning technology (GPS) approximately every twenty feet or at every noticeable change in road elevation, whichever came first, in the centermost part of the road. Data were then visualized using ArcGIS by importing point locations and displaying them as XY point values. Spot elevations were then manually input into a new corresponding float point field. Elevation rasters of the same width as the roads were then created using spline and inverse distance weighting interpolation.

Beach profiles and erosion measures

Students also collected data on beach erosion (or stability) by measuring the difference in beach profiles over time. Profiles were measured and re-measured at fixed geographic locations. Over the past 3.5 years, beach profiles were measured along East Haven beaches to better understand longer-term erosion or accretion patterns. Where possible, profile measurements were spaced along the beach approximately 200 m apart. Profile locations were recorded and measured from the seaward-most edge of coastal structures, or from the edge of the beach, to maximum wading depth. These measurements were then plotted using Microsoft Excel to reveal spatial patterns of erosion over time. Calculated variables included the width of the beach to the mean higher high water (MHHW) intercept and the volume of beach sand under the profile and above the mean lower low water elevation. Volumetric measurements were given units of m3 per unit length of shoreline. This allowed total volume of sand calculations for specified reaches of beach.

Structural damage assessment

In addition to empirical quantitative research, one stu- dent conducted door-to-door interviews at each house along the East Haven coastline to determine the nature of wave damage to each structure. A set of questions was asked at each home including the cost of structural damage that occurred, what type of damages occurred, whether or not a sea wall was present, and whether or not the structures were raised at the time. A map was created using Google Earth to show the structural damages pattern. Structures were put into one of the following categories: severe damages requiring demolition, severe damages, moderate damages, minor damages, and no damages.

Inundation
Figure 3. Data collection using laser-based surveying technology. (Courtesy of Isabel Chenowet)

Inundation map series

Immediately following the flooding that accompanied the storm surge of Superstorm Sandy, debris lines in the town of East Haven associated with the peak storm surge were located and photographed, and addresses were noted. Blue dots were spray painted to represent the upper boundaries of the debris line. These point locations were then recorded using GPS and their elevations were measured using laser-based surveying technology (total station) (Figure 3). An average elevation for the flood line point locations was then calculated along with a measure of variability (standard deviation). The average elevation for the flood debris was then compared with the peak storm surge water elevation measured at the nearby (~ 4 km) New Haven, CT tide gauge. The difference between the tide gauge elevation and the elevation determined by averaging debris elevations was just 1.5 cm, allowing a high level of confidence in the data collected.

Flood line locations and elevations were then visualized using Geographic Information Systems (GIS), resulting in a series of maps: (1) storm surge inundation of Superstorm Sandy, (2) storm surge inundation of Superstorm Sandy had it come at high tide instead of a couple of hours after low tide, and (3) storm surge inundation projections based on IPCC (2014) estimated sea level rise. This map series was created in ArcGIS utilizing high- resolution LIDAR imagery and 2010 USGS orthophotography. LIDAR imagery elevation information was extracted and displayed using a semi-transparent teal blue color to signify all areas that had been inundated during Superstorm Sandy (elevations at or below 8.9 ft (2.7 m)). A second semi-transparent layer displayed with purple color was added to signify the hypothetical Sandy at high tide storm tide elevation (elevations from 8.9 ft (2.7m) to 12 ft (3.7m)), as was originally predicted. Representation of these two scenarios were then overlain on USGS orthophotography. All remaining elevations were given no color to signify locations free from inundation. Flood debris point locations were then added and displayed as XY point values. These values matched up exceedingly well with the upper boundaries of the storm tide inundation determined from the LIDAR data.

Results

Figure 4. Cosey Beach during Hurricane Irene. Note collapsing house on left and wave splash overtopping house in center. (Courtesy of James Tait)
Wave Damages

While the presence of seawalls and raised structures all influenced the degree of wave damage, they were not the primary determinants. For structures that were raised, elevation on pilings often proved effective. However, in some cases, the magnitude of elevation was insufficient relative to peak surge elevation. In other cases, minor damages occurred to fences or stairs to elevated decks. In general, however, few structures were elevated before Sandy. Seawalls were frequently overtopped, deflected energy onto adjacent structures, or increased the elevation of wave splash (Figure 4).

Figure 5. A coastal road elevation map. (Courtesy of Michelle Ritchie)

When the coastal road elevation maps (Figure 5), the damage assessment map (Figure 6), and beach profile measurements (Figure 7) were compared, it became apparent that beach dimensions and road elevation played the largest role in determining the severity of wave damage. In particular, older cottages which were not elevated and lacked structural robustness sustained only minor damages if they were sufficiently far back on the beach profile, i.e., had a broad protective beach. This was the case even if road elevation was relatively low. In other areas, road elevation played a key role. The central portion of Cosey Beach Avenue, for example, is the highest part of the road topographically. Damages here were minor to non-existent. In the western portion of Cosey Beach Avenue, houses were the most robustly built, typically had low seawalls, but were at a lower road elevation than those in the central portion, and more importantly, had no buffering beach at high tide (compare Figures 5 and 6).

Figure 6. Damage assessment map. (Courtesy of Stephanie Cherry)
Figure 7. Changes in beach profile via volume of sand. (Courtesy of James Tait)
Figure 8. Map of Superstorm Sandy. (Courtesy of Michelle Ritchie)
Inundation

Inundation, while less dramatic than wave damage, also caused considerable damage and collectively may have been more costly. Sandy’s peak storm tide in East Haven was 8.9 feet (2.7 m). Mean higher high water in this area is 3.4 feet (1.0 m). On the morning of October 29, Sandy shifted its track westward toward New Jersey and accelerated to nearly twice its for- ward speed. As a result, the peak surge arrived in the East Haven (New Haven) area just after low tide. Using NOAA water level data for the New Haven station, the storm tide (predicted tide + the storm surge) elevation for the area was calculated and mapped (Figure 8). The storm tide for Sandy arriving at high tide was 12 feet (3.7 m). The areal extent of flooding and the depth of inundation would have been considerably worse. In addition, escape routes that functioned under the actual storm tide elevation might not have been accessible had Sandy’s forward speed not changed. The difference between the actual storm tide and the potential storm tide is similar to the rise in sea level (~3 feet). predicted for the end of the century by some climate models. The pathway of flooding was also an issue. In many places along the East Haven coast, salt marshes back areas of housing and other development. In most cases, flood waters moved landward from the marshes in addition to overtopping the beaches. As a result, distance from the shoreline was not a guarantee of safety. In one area, the flooding extended the shoreline of Long Island Sound ~1845 feet (~562 m) landward via marsh flooding.

Policy Discussion

In keeping with the ideals of SENCER courses, this student-driven research has substantially increased the fund of public knowledge of storm impact on the Connecticut coast and provided critical information on which

to ground public policy. Now more than ever, students, the general public, and politicians alike have come to realize that climate change is significantly impacting our lives. This is especially measurable in areas like the town of East Haven that were severely impacted by Hurricane Irene and Superstorm Sandy in recent years. In fact, following Hurricane Irene the Connecticut State Legislature authorized the Shoreline Preservation Task Force, a bipartisan group that has made policy recommendations and called for the integration of climate change and sea level rise science into both resource development planning and municipal zoning regulations (Tait and Ferrand 2014).

When assessing coastal vulnerability, it is essential that we look closely at the characteristics of an area to understand how they combine to constitute that area’s vulnerability. In the case of East Haven, Connecticut, topographic elevation and the presence of seawalls and raised structures all play roles in determining the severity of wave damage. Data analysis, however, indicates that beach width and height were the primary determinants of the degree of wave damage to coastal structures during Irene and Sandy. With this information, locally proposed policy changes can be made to more easily and economically maintain the buffering capacity of beaches in the face of future storm waves and improve the accuracy of evacuation warnings.

For example, direct development of the shoreline should be strongly discouraged. The long-standing assumptions that the Long Island protects the Connecticut coast, or that erosion is random rather than methodical, need to be dispelled. In addition, a managed retreat from the coastline in areas of high vulnerability needs to become part of policy conversations (Tait and Ferrand 2014). Furthermore, less expensive alternatives to current beach nourishment projects, which consist of trucking in sand from other regions, should be explored. One such economical option would be to pull eroded sands back onshore. In general, regional planning to make coastal communities more sustainable in the face of future storms needs to be undertaken. Although the State of Connecticut has established an interdisciplinary research, outreach and education center (Connecticut Institute for Resilience and Climate Adaptation) that offers support to local communities, response to Irene and Sandy still largely resides with individual communities.

One improvement to the current system might be a regional sand management plan. At present, beach restoration is discouraged and when replenishment does occur, sand is typically trucked in or shipped in from distant offshore borrow areas or regional quarries. Sand that was originally eroded from the beaches, however, typically accumulates just offshore. Using this sand source to replen- ish the most vulnerable beach areas according to a system of prioritization would be a significant improvement to the current system. In other areas, where replenishment is cost-prohibitive, prioritizing which assets to protect (i.e., which beaches to replenish), and which beaches should be surrendered to nature, would be another viable and more sensible option.

The results of these studies have been made available to the Engineering Department of the town of East Haven and to the Public Works Department of the town of West Haven to aid in their long-range and emergency planning efforts. Similar work is being done for the State Beach at Hammonasset. Recommendations based on the results of this work will be offered to the State Department of Energy and Environmental Protection as well as to the Environment Committee of the State Legislature.

About the Authors

Michelle Ritchie recently graduated with honors from Southern Connecticut State University with a Bachelor of Arts in Geography and a concentration in Environmental Studies.   While at SCSU, she worked as a research assistant at the Werth Center for Coastal and Marine Studies and as an intern at the Office of Sustainability and Recycling Center. She is currently attending Binghamton University in pursuit of a Master of Arts in Geography specializing in Environmental and Resource Management while working as a graduate research assistant at the Hazards and Climate Impacts Research Center. Her research primarily focuses on hazard mitigation, planning and recovery.

James Tait is a professor of marine and environmental sciences in the Department of the Environment, Geography and Marine Sciences at Southern Connecticut State University. He received his Ph.D. from the University of California at Santa Cruz in Earth Science with a specialization in Oceanography and, in particular, Coastal Processes. Since 2011, his research has focused on the coastal impacts of large storms, including Irene and Sandy. Dr. Tait is a SENCER leadership fellow and a co-recipient of the William E. Bennett Team Award for Outstanding Contributions to Citizen Science. Along with his colleague, Dr. Vincent Breslin, he co-authored a course for the SCSU Honors College on Science and the Connecticut Coast. The course has students conduct scientific studies of storm impacts and coastal pollution in Connecticut. The course became a SENCER Model Course in 2007. Dr. Tait is also co-founder of the Werth Center for Coastal and Marine Studies at SCSU. The Center employs talented students as research assistants working on problems such as coastal vulnerability and resilience, metal pollution of coastal sediments and organisms, microplastics in the marine environment, coastal water quality changes, and response of corals to climate change in Long Island Sound.

References

AIR Worldwide Corporation. 2013. The Coastline at Risk: 2013 Update to the Estimated Insured Value of U.S. Coastal Properties. http:// www.air-worldwide.com/Facet-Search/Search-Results/ (accessed January 2, 2016).

Fischetti, M. 2012. Sandy vs. Katrina, and Irene: Monster Hurricanes by the Numbers. Scientific American. Available: http://www. scientificamerican.com/article/sandy-vs-katrina-and-irene/ (accessed January 2, 2016).

Grumm, R.H., and C. Evanego. 2012. “Hurricane Sandy: An Eastern United States Superstorm.” NWS State College Case Examples. http://cms.met.psu.edu/sref/severe/2012/30Oct2012.pdf (accessed January 2, 2016).

Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writing Team, R.K. Pachauri and

L.A. Meyer, eds.) Geneva, Switzerland: IPCC.

National Oceanic and Atmospheric Administration (NOAA). 2013. National Coastal Population Report: Population Trends from 1970 to 2020. http://stateofthecoast.noaa.gov/features/coastal-population-report.pdf (accessed January 2, 2016).

Tait, J., and E.A. Ferrand. 2014. “Observations of the Influence of Regional Beach Dynamics on the Impacts of Storm Waves on the Connecticut Coast during Hurricanes Irene and Sandy.” In Learning from the Impacts of Superstorm Sandy, J.B. Bennington and E.C. Farmer, eds., 67–88. London: Academic Press.

Download (PDF, 1.73MB)

Teaching Through Human-Driven Extinctions and Climate Change: Adding Civic Engagement to an Introductory Geology Course for Non-Majors

Alison Olcott Marshall,
University of Kansas
Kelsey Bitting,
University of Kansas

Abstract

Two of the greatest challenges facing humanity—climate change and the dramatic loss of biodiversity—are best understood through the lens of deep time. We applied SENCER principles to redevelop an introductory paleontology course at the University of Kansas (Geology 121, “Life through Time: DNA to Dinosaurs”) to help general education students understand the value of our discipline in the modern world. Our process included reducing content coverage and connecting geologic concepts to modern challenges, placing students in teams and implementing active learning in every class, and including a final research project that challenged students to mitigate the current mass extinction event. While students were initially uncertain about the new course since it would require more work on their part, final student comments on the class were overwhelmingly positive, and final grades improved dramatically over past semesters, despite a significant increase in the rigor of the course overall.

Introduction

Many students enroll in introductory geology classes merely to fulfill a distribution requirement (Gilbert et al. 2012). At the University of Kansas, all undergraduate students are required to take a natural science course regardless of their major, and this class is often their only college-level science class and the last science class they will ever take. Given that two of the most pressing issues facing humanity right now—climate change and the prospect of human-caused mass extinctions—can best be understood through a geological lens, we decided to redevelop Geol 121, “Prehistoric Life from DNA to Dinosaurs,” an introductory paleontology class for non- majors, according to the SENCER model. Although geology majors can take this class to supplement the required introductory geology course, the majority of the students are not majoring in a STEM field.

Traditionally, this course has been lecture-based, and student learning was gauged by measuring the student’s ability to memorize details about when various animals originated and went extinct through geological time. During the redesign process, we established two primary goals to guide our efforts: (1) geological and paleontological information would be interwoven with the interconnected civic issues of human-driven extinctions and climate change, and (2) students would actively explore and discover knowledge themselves, rather than passively receiving it. By teaching through these complex, controversial, and current issues, and by challenging students to directly engage with the science, we sought to increase student understanding of the scientific method and its impact on their everyday lives. This paper describes the redesign process and preliminary outcomes.

Methods

The redesigned class was offered in Fall 2014 to 60 students. This was the fifth time Olcott Marshall had offered this class, having taught the old version four times between Spring 2009and Spring 2013, to a total of 452 students. Olcott Marshall began the redesign process in March of 2014, and was guided and assisted from that time until the end of the semester by Bitting, whose role in the department was as a teaching specialist. To transform the class, three steps were necessary: (1) streamlining the material, (2) creating opportunities for active engagement, and (3) implementing a final project that allowed students not only to synthesize and evaluate all of the information they had explored during the semester, but to apply that information to matters of immediate societal importance.

Streamlining Material

The first modification was decreasing the amount of material the course would cover. The original version of the class covered 3.5 billion years of Earth history, with each day of the class dedicated to lecturing about a different period of geological time. This much material was overwhelming to the students and did not allow more than a superficial introduction. For the new course, we implemented a backwards design approach (Wiggins and McTighe 1998): First, we established two specific student learning outcomes related to human-driven extinctions and climate change: “Students will be able to

  • analyze the extinction pressures acting on modern organisms in the context of those organisms’ geologic, evolutionary, and climatic history.
  • construct an action plan for mitigating the current mass extinction event that is informed by their understanding of organisms’ roles in and relationships with the Earth system.”

Based on these intended outcomes, we determined what content material to cover in class and shifted the emphasis of the course from declarative to procedural knowledge to allow students to practice skills that would allow them to succeed in the complex tasks leading to the outcomes above. The material we identified for the redesigned course had previously been covered in only eight lectures, but now the students would explore the material in-depth over the course of 30 class meetings.

Active Engagement

In previous years, students were mostly passive recipients of knowledge in the class and were expected to study facts, dates, and terms on their own to prepare for exams. In 2009, 2011, and 2012, student grades were determined solely by four exams. In 2013, students did a short five- to ten-minute activity at the end of each lecture, but these were done individually, and since the students left when they were finished, there were few opportunities for the class to summarize, debrief, or reflect on what they were doing or why.

For the redesigned class, we wanted students to engage with the material from the very beginning, to recognize that their learning occurred through actively exploring the information, and to apply, analyze, and evaluate their newfound scientific knowledge continuously. Every class period, the students worked through a series of two or three related activities designed to scaffold them through the process of activating and building upon prior knowledge (Linn 1995; Vygotsky 1980). Some activities required students to summarize and explain the conclusions of figures from published paleontological studies, while at other times the students worked with raw data they downloaded from the Paleobiology Database (http://paleodb.org) to interpret, examine, and craft hypotheses. To leverage students’ social goals (Ford 1992), and to harness the power of peer instruction ( Johnson et al. 1991), some of the activities were done in groups of three or four, and others required the students to work individually before consulting with their groups (think-pair-share) (Table 1). By including a wide range of types of activities, we were able to provide instructional conditions that appealed to extroverted learners, such as interactive collaborative activities, and ones that appealed to introverted learners, such as solitary deductive sequences ( Jonassen and Grabowski 2012). Additionally, in order to help students integrate their knowledge into a more coherent framework, each class period included time for them to reflect individually, in groups, and as a class on what they were learning and why (Davis and Linn 2000).

Final Project

Although the activities provided the students opportunities to appraise and synthesize information, our ultimate goal for the course was for the students to generate and defend their own research into the twin civic issues underlying the course. To accomplish this, during the last third of the semester we implemented a series of assignments to scaffold students through their collaborative final class project, which culminated in an authentic public event dubbed “Paleocon.” This project required teams of students to choose a threatened modern animal and an extinct counterpart and research their habitats, ecosystems, and lifestyles. They evaluated and described how the ancient organism became extinct and extrapolated lessons learned from that extinction event to help the modern organism survive the twin specters of human-caused extinction pressure and climate change. In lieu of a final examination, the teams presented their findings to their classmates, the university, and the general public in a creative science-fair-style presentation.

Outcomes

Throughout the redesign process, we shifted the emphasis of the activities, assignments, and assessments away from simple memorization and understanding to build in more analysis, synthesis, and evaluation of ideas and information. This shift is well illustrated by a general analysis of exam questions by level on Bloom’s Taxonomy (Bloom et al. 1956) in the Spring 2012 (traditional) and Fall 2014 (redesigned) semesters, shown in Figure 1.

We acknowledge that grades are not a proxy for learning but it is striking that, although the redesign required the students to do more work and to understand the material on a deeper level than in previous years, student performance (as measured by grades) increased as well, eighty percent of the class earning an A or a B (Figure 2). Qualitatively comparing student written work from previous years with that produced by students in the new course demonstrates increases in student engagement and ability to synthesize material on their own (Table 2).

Although the two questions asked are slightly different each year, to answer either question, a student would need to know the age of the Earth and understand the principles of radioactive age dating. In the transformed class, student work reveals a deeper understanding of the material and increased ability to synthesize different types of information than in years past.

Student success, as well as the success of the redesign, are also reflected in the students’ attitudes towards the class and the material. Students were initially leery of the changes in the class, as they correctly surmised that they would be doing more work than a traditional lecture-based course would require. They also were, as one student put it,“shocked that they had to be in a group and do so much group work.” However, they quickly became much more engaged with the material than in previous years; one student commented that the class “motivates us to want to learn the information and apply it to things that interest us as opposed to just being in the library and studying and then going and taking a test.” Or, in the words of another student at the end of the semester: “I expected this class to be somewhat boring and easy but it was anything but that. It provides you with a lot of insight that you can carry on to a lot of career fields. It’s a strong base to the information that you will gain in the rest of your collegiate experience.”

About the Authors

Kelsey Bitting is a Visiting Assistant Professor and Postdoctoral Teaching Fellow for Course Redesign at the University of Kansas. She is a trained geomorphologist   and sedimentary geologist, but her current research interests center on geoscience learning and the implementation of active learning in introductory courses.

Alison Olcott Marshall is a paleobiogeochemist at the University of Kansas. Her research involves using chemistry to quest for and understand fossils, and she has recently become interested in transforming her classes with the hope that students will be excited and involved in their own learning.

References

Bloom, B.S., M.D. Engelhart, E.J. Furst, W.H. Hill, and D.R. Krathwohl, eds. 1956. Taxonomy of Educational Objectives: The Classification of Educational Goals. Handbook 1: Cognitive Domain. New York: David McKay.

Davis, E.A., and M.C. Linn. 2000. “Scaffolding Students’ Knowledge Integration: Prompts for Reflection in KIE.” International Journal of Science Education 22 (8): 819–837.

Ford, M.E. 1992. Motivating Humans: Goals, Emotions, and Personal Agency Beliefs. Newbury Park, CA: Sage Publications, Inc.

Gilbert, L.A., J. Stempien, D.A. McConnell, D.A. Budd, K.J. van der Hoeven Kraft, A. Bykerk-Kauffman, M.H. Jones, C.C. Knight, R.K. Matheney, D. Perkins, and K.R. Wirth. 2012. “Not Just ‘Rocks for Jocks’: Who Are Introductory Geology Students and Why Are They Here?” Journal of Geoscience Education 60 (4): 360–371.

Johnson, D.W., R.T. Johnson, and K. Smith. 1991. Active Learning: Cooperation in the College Classroom. Edina, MN: Interaction Book Company.

Jonassen, D.H., and B.L. Grabowski. 2012. Handbook of Individual Differences, Learning, and Instruction. New York: Routledge.

Linn, M.C. 1995. “Designing Computer Learning Environments for Engineering and Computer Science: The Scaffolded Knowledge Integration Framework.” Journal of Science Education and Technology 4 (2): 103–126.

Vygotsky, L.S. 1980. Mind in Society: The Development of Higher Psychological Processes. Cambridge, Mass.: Harvard University Press.

Wiggins, G., and J. McTighe. 1998. Understanding by Design. Upper Saddle River, NJ: Merrill Prentice Hall.

Download (PDF, 982KB)

Women in STEM: A Civic Issue with an Interdisciplinary Approach

Habiba Boumlik,
LaGuardia Community College, CUNY
Reem Jaafar,
LaGuardia Community College, CUNY
Ian Alberts,
LaGuardia Community College, CUNY

Abstract

Fewer women major in STEM than in liberal arts and social sciences. How do family background and cultural issues impact upon and help shape students’ career choices and majors? Using a civic engagement approach, our transdepartmental collaboration (Mathematics, Natural Sciences, and Liberal Arts) in a community college allowed 80 students to become aware of the invisibility of women in STEM. This paper discusses the outcomes of this collaboration in terms of understanding family and cultural influences on students’ career choices and motivation to major in STEM, while raising the issue of women’s absence in STEM. The data supporting the research are based on conclusions drawn from analyzing students’ responses to surveys and contributions to class discussions, as well as homework and writing assignments. We also present a sample of student work in an effort to assess whether the instructional objectives of our interdisciplinary civic collaboration were met.

Introduction

Despite efforts to increase the representation of women in STEM fields, the gender gap in fields such as physics and engineering still persists (American Association of University Women 1998; Brickhouse 2001; Brotman and Moore, 2008). This gap is observed in both undergraduate education and in the workplace (Brickhouse 2001).

The need to recruit a more diverse workforce in the STEM fields dates back to the Sputnik crisis and America’s response to the perceived technological disparity between the U.S. and rival nations in the 1950s. Today a serious lack of workers in STEM areas is exacerbated by the underrepresentation of women entering such fields. Increasing participation in STEM areas will invigorate society’s efforts to innovate and design solutions for complex technological problems in the future. Clearly, ignoring a whole cohort of potential STEM workers when there is a natural shortage of people in the field does not alleviate the problem. Furthermore, increased female participation in STEM fields may yield a more equitable society.

Within this context, the current paper involves a transdepartmental collaboration in a Community College setting. Three professors from different departments conducted action research to investigate the question of why there is a paucity of women in STEM-related fields. Data to investigate the student perspective were collected from multiple sources; surveys, assignments and class discussions, in order to strengthen the reliability of the data. The data were analyzed in order to understand the student perspective concerning the research question and to devise theories or approaches to address the problem. Throughout the project period, regular interaction and discussion among the three faculty members provided scope for reflective practices and for the refinement and improvement of subsequent stages of the project.

Contextualization, Civic Engagement, and Women in STEM: Literature Review

There is a significant body of literature focused on enhancing student interest in the STEM fields, as well as addressing the underrepresentation of women in several areas of STEM. For instance, the incorporation of real-world issues into mathematics classes has proven to be successful and meaningful for students, as is illustrated by the example of Roosevelt University, where González- Arevalo and Pivarski (2013) demonstrated the strong validity of integrating real-life, everyday connections as well as civic issues into semester-long class projects for an advanced Calculus II course. They found that students appreciated gaining an understanding of civic connections, so that they could view math not as an isolated subject, but as one that can be exploited to acquire deeper insights into real-world issues, such as the spread of HIV/Aids, levels of Greenhouse Gas emissions, wealth distribution, and population growth. The incorporation of SENCER principles (Science Education for New Civic Engagements and Responsibilities) into the course allowed students to critically explore key civic issues of local, national, and global concern from a multidisciplinary perspective.

The underrepresentation of women in the STEM sector has become a major civic issue at many hierarchical levels, including government and educational establishments (Report to the President 2010). For example, the Obama administration recently established an Educate to Innovate (2013) enterprise, comprising a partnership between the public and private sector and committed to broadening the participation of underrepresented groups in the STEM fields, particularly women and minorities, to enhance the diversity of the talent pool in this area (U.S. Executive Office of the President 2013). From the academic perspective, several studies have been conducted to explore the paucity of women and other minorities in the STEM fields, the reasons for such gender discrimination, and the obstacles women face, in order to promote strategies to overcome the diagnosed impediments. A recent study has shown that gender biases exist in science, particularly in academia. Science faculty from research universities, regardless of their gender, were found to exhibit unintentional biases towards male students (Moss-Racusin et al. 2012). This may stem from cultural stereotypes (Devine 1989).

In the 1980s and the 1990s, many scholars brought to light feminist pedagogies and feminist epistemologies (Hekman 1990; Keller 1985; Martin 1991; Pagano 1998). These pedagogies had a direct impact on course curricula and in the teaching of biology, chemistry, and physics (Barad 1995; Barton 1997; Rosser 1986; Whatley 1985). It is important to note that different majors provide different cultural environments. For instance, the humanities field is characterized by discussions and questions in classes, whereas science classes are dominated by a culture of acquiring specific skills to solve problems (Knight et al. 2011).

When looking for the roots of the underrepresentation of women in certain STEM fields, such as physics and engineering, several angles have been examined. Catsambis (1995) explored the achievement gap and science attitudes and achievements of a multi-ethnic sample of eighth grade students and found that girls’ achievements were at equal levels compared to the boys, but that they had more negative attitudes towards science. Miller et al. (2006) examined gender differences in students’ perceptions about science among high-school students and found that girls liked biology and health-oriented fields. However, girls often perceived science in general as uninteresting. Furthermore, the underrepresentation of women in some undergraduate STEM fields can lead to feelings of isolation and to lower self-esteem compared to the males (Seymour 1995).

Two of the authors of the current article are faculty in STEM fields where women are underrepresented. A project to understand the gender perceptions of their students came to light when they were approached by a faculty member from the Education and Language Acquisition (ELA) department, who teaches a liberal arts capstone course.

The authors’ focus is on the perceptions of gender inequalities in the science and technology areas—as related to the attitudes, feelings, and behaviors that a given culture associates with a person’s biological sex— from the viewpoint of students at LaGuardia Community College. We also explore student perspectives on whether they believe that such gender inequality barriers will impede their development in specific sectors of STEM.

***

LaGuardia’s Mathematics, Engineering and Computer Science (MEC) department has extensively invested in contextualizing mathematics using civic engagement. In this connection, MEC faculty initiated Project Quantum Leap (PQL) as an evolution of the SENCER approach, in order to teach math topics within the context of pertinent civic issues to students in remedial and entry-level mathematics classes in a municipal two-year community college (Betne 2010). This project has yielded many faculty-developed projects during its three-year funded period, including those from a cohort of non-math faculty participants. Although not all the remedial and introductory math courses in which PQL was implemented were impacted equally, the overall outcomes showed positive effects on students’ critical literacy skills and quantitative reasoning. As an illustration, the MEC faculty involved infusing an introductory college algebra course with PQL projects (Jaafar 2012). These projects focused on topics of civic relevance pertaining to the environment, health, and finance in order to enhance student engagement with the course material and allow students the opportunity to gain deeper insights into critical real-world issues by applying quantitative mathematical reasoning and interpretation. Student feedback from qualitative surveys was found to be overall very positive. For example, in a project related to debt and student loans, most participants said that their understanding of debt, interest rates, and repayments had improved considerably through participation in this work (Jaafar 2012).

“SENCERizing mathematics” is not unique to the PQL projects detailed above, which have been integrated into remedial and introductory mathematics classes. For advanced mathematics, González-Arevalo and Pivarski (2013) implemented semester-long projects in capstone Calculus 2 classes that yielded many diverse student research projects. Kasi Jackson and Caldwell (2011) applied feminist pedagogies (Hekman 1990; Keller 1985; Martin 1991; Pagano 1998) to the non-science-major introductory Biology 101 classroom, but in a limited manner. The aim behind the work was to integrate scientific knowledge with topics of civic importance so that students could improve their skills in applying science concepts to real-world issues that they are familiar with from everyday life. In assignments, students were asked to identify differences between science writing and the popular reporting of science, evaluate the content of a scientific news article, and discuss the flow of information between scientists and the media. From conducting surveys, the authors observed improved student confidence in the application of their scientific knowledge to social issues and enhanced interest in the course topics, although there appeared to be little change in students’ desire to take more science courses (Kasi Jackson and Caldwell 2011).

Inspired by the successes of these “SENCERized” STEM-based courses, the three faculty from MEC, Natural Sciences (NS), and ELA teamed to create assignments about a non-traditional civic issue related to the underrepresentation of women in STEM. Gender equalities and the gender gap are current and critical societal concerns (Educate to Innovate 2013; Report to the President 2010), and, as discussed in the Introduction, the paucity of women in the STEM sector has increased significantly in recent years in terms of education, degrees earned, and employment in the STEM sector (De Welde et al. 2007; NSF 2012a; NSF 2012b). With regard to employment, women are outnumbered in STEM fields in industry, business, and government, although, interestingly, in institutions with lower salaries and status, such as K-12 schools and two-year community colleges, there are often more women than men in the majority of STEM areas (De Welde et al. 2007). A number of reasons have been proposed for the dearth of women in STEM: lack of role models and encouragement, cultural bias and discrimination, poor salaries and status, and the balancing of work-life issues (De Welde et al. 2007; Pollack 2013). Hence, the issue of women’s underrepresentation in STEM must be tackled from multiple perspectives and angles. We decided to explore women in STEM as a civic issue from diverse perspectives using a contextualized, student-focused, connected-learning, SENCER-based approach.

The Participants

The students who participated in the study come from diverse backgrounds and have attained different levels of academic skills through their distinct academic and social experiences. Eighty students participated in the study. Fifty-six of these students were taking either a remedial mathematics or an introductory college algebra course, and the remaining twenty-four students were enrolled in the LIB200 capstone course. The students in the mathematics classes were in the early stages of their journey at LaGuardia, whereas students in LIB200 were close to graduation.

The capstone course was fully dedicated to discussing women’s issues from an anthropological perspective. It focused on women and the sciences, and students were assigned articles and data on women’s involvement or lack of involvement in the sciences and then asked to write research papers on this key issue. MEC and NS faculty participants provided some of the supporting data and articles pertaining to the theme. They also visited the LIB200 class twice separately and took charge of the discussion of one of the master readings. The NS faculty member supervised two research papers in LIB200 on two famous figures in the sciences.

Students in the two targeted mathematics courses were also assigned reading and writing material, but to a lesser extent. In addition, they were assigned mathematical content that was included in the syllabus. (The details of the materials are described in the section“Infusing Remedial Mathematics Topics with Women in STEM” and in Appendices C and D). Surveys were also conducted in the two mathematics and LIB200 classes in order to explore the perspectives, ideas, and understanding of students related to the paucity of women in the STEM field. Our purpose is to shed light on how, through this unique transdepartmental collaboration, we integrated civic and educational principles to our course content. The paper discusses the outcomes of this collaboration in terms of how to (1) better understand the process through which our students’ major and career choices are influenced by their family background and cultural biases; (2) strengthen the motivation of students, particularly women, to major in STEM; and (3) raise awareness about women’s absence from the STEM field. The data supporting our research are based on conclusions drawn from analyzing students’ responses to surveys conducted in the two mathematics classes and in LIB200. We also analyzed the content of a sample of student work from specific assignments in an effort to assess whether the instructional objectives of our interdisciplinary civic collaboration were met.

Methodology

In order to address the civic and interdisciplinary aspects of women in the STEM fields, several methodologies were employed, with a focus on pedagogical approaches to engage students. We combined content and thematic analysis to examine students’ work and identify common patterns in students’ responses to both the surveys and assignments (Savin-Baden and Howell Major 2013). First, various student surveys were conducted. A demographic survey was administered that helped us better understand the diverse backgrounds of the students. A subsequent questionnaire survey focused on other key aspects, such as the reasons for students’ major and career choices and the importance of women in STEM (Appendix E). The development of these surveys was based on discussions that took place in the LIB200 and mathematics classes as well as the students’ responses to assigned readings. We have not used any internal method of validation of the surveys. The research was built into the LIB200 assignments: by signing up for the course, students agreed to engage in the readings about Women in STEM and participate in the two surveys. Within this framework, the authors believed it was not necessary to estimate the percentage of students responding or to test for biases in the response frequency. Both surveys were administered to all students enrolled in the liberal arts capstone course and in the remedial and college-level mathematics courses. Secondly, several assignments were designed in which students were given specific reading materials and relevant data as well as sets of guided questions. Using these elements, students were then asked to write appropriate essays based on the contextualized issues under consideration in this research. By “appropriate,” we mean essays relevant to the topic of women in STEM, using the concepts of gender inequalities and biases and fulfilling the requirements of a capstone course. The final appropriate aspect of the essays is a result of a scaffolding approach that enables students to gradually grasp the course concepts and write a relevant final research paper, having worked through both low stakes and high stakes assignments and using ePortfolio to document their progress.

The issue of women in STEM has not previously been tackled from such an interdisciplinary and civic angle. As stated in previous work, a true interdisciplinary study involves a synthesis of at least two different disciplines or fields (Dykes et al. 2008; Lattuca 2001; Wall and Shankar 2008). The issue of women in STEM has typically been explored only from the perspective of students majoring in STEM. Our research is unique in that we are attempting to assess the benefits of a collaborative multidisciplinary approach to bring awareness to the issue of women in STEM, in the context of a liberal arts capstone course as well as in remedial and introductory mathematics courses for a predominantly non-STEM major student population.

As we will show, each of these classes addresses in its unique way the civic issue of women in STEM using different assignments and methods. The goal of the research was to raise the awareness of all students in the classes about the underrepresentation of women in some STEM fields, rather than to target the women specifically. In this respect, the readings and discussion topics were enriched by the contrasting and diverse views of the whole group of students in the classes. We measured the impact of such an approach by the involvement of students in the class discussions and by their response or lack of response to the concerns of female students that were raised by their increased awareness of the women in STEM issue.

LIB200: Reflection on Cultural Impediments to Recruiting in STEM

The Liberal Arts Seminar explores aspects of the relationship between humanism and science and technology, and draws on texts from the humanities, arts, social sciences, and sciences. Students are required to reflect on the responsibilities of citizenship in a diverse society. The course is designated as writing intensive and, as a capstone, it offers a culminating experience for students’ education at this community college.

LIB200 challenges students to demonstrate competencies in two areas: Critical Literacy requires students to understand and think about the world around them and encourages them to investigate and interrogate societal institutions and issues; Oral Communication comprises interpretation, composition, and presentation of information, ideas, and values through verbal communication. The particular LIB200 section that contributed to this research was fully dedicated to women and gender issues. The principal aim of this section was to help students acquire an awareness and a deep understanding of gender biases, and to encourage them to question and apply critical thinking to culturally constructed gender categories. The concepts studied in the course allowed students to further elaborate on the obstacles women face when they desire to enter and succeed in the STEM domain.

In terms of course content, the section analyzed theoretical literature on gender and explored various perspectives concerning women’s lives from a cross-cultural standpoint that requires a multicultural approach. The multicultural aspect helped students to understand, accept, and value the cultural differences between groups, “with the ultimate goal of reaping the benefits of diversity” (Burn 2010, 8). Furthermore, relevant examples were drawn from a variety of different contexts and disciplines that are related to gender issues. For instance, the course stressed the main differences and commonalities of women cross-culturally. In this context, the Oral Communication component comprising discussions on women in STEM fits into the course unit designated as “Women and Work.” This unit covered issues related to cultural and social impediments to women’s recruitment and promotion (such as the gender pay gap, the glass ceil- ing, etc.) as well as cultural factors that hinder women’s involvement in educational and professional fields perceived as being male dominated. The social constraints in selecting a major and a job were also debated.

The interdepartmental collaboration for this project resulted in several assignments designed by the MEC and NS faculty and conducted with the LIB200 students. This collaboration did not involve team-teaching. The LIB200 instructor provided the platform for this collaboration because her class was well suited to the implementation of the research project. Although the LIB200 course elaborates extensively on gender-expansiveness (Understanding Gender 2015) and on the diversity of gender experiences across cultures, this collaborative project was designed to reflect the full spectrum of gender definition.

The collaboration encompassed the three disciplines represented by the faculty involved: the math and natural sciences instructors provided suggestions for reading material for the LIB200 students, which formed the basis for the class assignments, and also supervised the class discussions on this material. In addition, the natural sciences instructor supervised the research papers of two students enrolled in LIB200. The LIB200 instructor contributed to elaborating, supervising, and analyzing the questionnaire survey administered to the LIB200 students.

In the readings assigned for the class, critical references were made to gender inequalities, social construction of gender roles, family expectations, and social impediments in order to help explain the paucity of women in STEM. The assignments focused on (1) the general context of women and science, and (2) the life and contributions of specific women in the scientific arena. As stated

earlier, the data for this research project were collected from the questionnaire survey (Appendix E), students’ assignments based on the readings, and class discussions. Most of the emerging themes came from class discussions, which helped in the generation and refinement of the questionnaires. Time restrictions did not allow for any class observations or focus groups to further explore the themes. Our approach is based upon action research in that it involved selecting a focus, clarifying theories, identifying research questions, collecting and analyzing data, reporting results, and taking informed action by suggesting some measures (Kayaoglu 2015).

The questionnaire survey results are reported in “Survey Results & Assessment” below. Here we address one of the important issues for this research project: the lack of awareness regarding the presence of women in the sciences. For instance, to the question: “Could you mention the name of a female scientist?” only three students taking the mathematics classes and three students in LIB200 were able to provide an answer. In reaction to this lack of knowledge of female scientists, the NS professor designed an assignment for the LIB200 class that involved writing an essay dedicated to the contributions and life of a specific woman in science. The main aim of this assignment was for the students to explore the scientific career and accomplishments of the chosen woman and, importantly, to consider and acquire insights into the background, life, and culture of the woman, including any gender-related barriers and difficulties she may have experienced.

Further details of the assignments are given below and in the Appendices. Table 1 summarizes the different courses where the assignments in the Appendices were given.

Women and Science

This assignment was devised by the MEC faculty member.

Learning Goals: To understand the issues and factors related to the underrepresentation of women in STEM fields, to relate these issues to ones’ personal circumstances and background.

Approach: Students were required to read an article entitled:“Why Are There Still So Few Women in Science?” (Pollack 2013). They were then asked to write a one-page essay based on the following questions:

  1. Given your own culture, to what extent do you see the article’s title statement applicable to you?
  2. Suggest new ways of including women in the field of Provide explanations for your suggestions.

In a subsequent LIB200 class , the NS faculty led a discussion of students’ opinions on the issues raised in the article. See Appendix A for more details of the assignment and samples of student output. This assignment was also completed by the students in the two mathematics classes. The MEC faculty member also introduced several other assignments that focused on more quantitative aspects of women in STEM. Some of these assignments were targeted for the remedial mathematics students, others for the college algebra group. We describe the assignments within the relevant course context below.

Specific Woman in Science

This assignment was devised by the NS faculty member.

Learning Goals: To familiarize students with the contributions of a specific woman to her scientific field, to expose students to the social issues and obstacles the woman faced at the time, to consider whether the same obstacles still exist today.

Approach: Students were asked to write a Research Paper of approximately 800–1200 words based on the contributions and accomplishments of a specific woman in science. This work exposed students to the scientific work and discoveries of the chosen woman, as well as to the social issues and obstacles the woman faced. The research paper also represented an opportunity for students to explore an area of their own academic or professional interest. See Appendix B for more details of the assignment and samples of the output of the two LIB200 students who worked on this assignment.

Infusing Remedial Mathematics: Topics with Women in STEM

At LaGuardia Community College, many students attend college part-time, have children and full-time jobs, and are often placed in remedial (also known as developmental) mathematics classes. In any given semester, approximately 7000 students enroll in a mathematics class, with forty- one percent of enrollees taking remedial mathematics. The majority of the students in developmental mathematics had negative experiences in previous mathematics classes, which has likely contributed to a low level of self- confidence, poor motivation, and/or high anxiety towards the subject (Hammerman and Goldberg 2003). Teaching remedial mathematics using a contextualized approach that invokes real-life problems in the mathematics setting can help the students engage with the subject and enhance their critical literacy skills.

The specific assignment designed by the MEC faculty member for this collaborative project is detailed below.

Learning Goals: To explain the concepts of ratio and percent using a civic issue as the contextualized medium, to master conversion from ratio to percent, to understand the meaning of a percent. The assignment reflects the interdisciplinary approach adopted in this project in that it draws its content from a gender-focused perspective. If it were not for this collaborative work, the instructor would have used examples stemming from a variety of fields (political, economic, biological…), all equally relevant to students.

Approach: This assignment comprised both in-class and out-of-class activities. The in-class activity involved students working in groups of three or four. In teaching ratios and proportions, data were used that were provided by the National Science Foundation and pertained to the employment status and median salary of 2008 and 2009 science, engineering, and health doctoral degree recipients, in terms of broad field of doctorate and sex (NSF 2010a). First, students were required to look at the table and explain the meaning of the data. Students were then required to answer several questions about ratios of males to females in the biological sciences and in the mathematical sciences. In this respect, they needed to critically interpret ratios in context. Appendix C details the assignment. The students were also provided with a second table that represented the number of Science and Engineering (S&E) doctoral degrees by sex and by selected country (NSF 2010c). Using these data, they were asked to identify their own country of origin in the table in order to find the percent of females in S&E fields and in Non-S&E fields. They were also required to choose another country, and again find the percent of females in S&E fields and in Non-S&E fields. Finally they were asked to compare and speculate on the reasons for those percentages and any observed differences.

LaGuardia’s students hail from over 150 countries. To bring a “taste of home” to the assignments, it was important for our students to learn about the status of women in science in their country of origin and compare it with the United States. Native U.S. citizens were asked to consider a country of their choosing.

The out-of-class activity comprised two components. First, students were asked to write a one-page essay explaining their own career choice, and whether it is in a STEM or non-STEM field. They were also asked to relate data from the tables discussed in class to their career choice and to consider whether the underrepresentation of women in science impacts on the societal status   of women. For the second component, students were assigned to read an article entitled “Why the Status of Women in STEM Fields Needs to Change” (Thomas 2013). The article not only describes why there are few women pursuing STEM fields but also argues why the status quo needs to change. Students were asked to write a one-page essay revolving around the following statement in the article:“As a culture, we don’t particularly encourage girls to play with mechanical objects which can develop both comfort and interest.” They were required to critically consider whether the statement is applicable to them and to suggest new strategies for enhancing the participation of women in the sciences. The same idea was also implemented in a college algebra class, with different learning goals. The reading assignment was the same but the essay was structured differently.

Infusing College Algebra: Topics with Women in STEM

Exploiting the real-world context of Women in STEM, this assignment was designed for an introductory college algebra class in order to improve the quantitative reasoning and critical literacy skills of the students. The specific assignment is detailed below.

Learning Goals: To understand Linear Modeling, to find and interpret the meaning of the slope.

Approach: Students were presented with a table about earned bachelor’s degrees by sex and field for the years 2000–2011 (NSF 2010b). They started working on this mini-project during class time but were required to complete it on their own outside of class. Details of the project are listed in Appendix D. Several questions were assigned that required students to focus on the trends in bachelor’s degrees awarded to males and females in both Psychology and Engineering. First, students were asked to calculate the percent of males who earned bachelor’s degrees in Engineering in the years 2000 and 2011 and the percent of females who earned bachelor’s degrees in Engineering in the same years. The aim of these questions is to show that, although the number of females earning a bachelor’s degree in Engineering has increased from 12,206 to 14,656 over the eleven-year period, this represents only a twenty percent increase compared with thirty-four percent for male Engineering degree holders over the same period of time. To enhance their quantitative reasoning skills, the students were then asked to interpret the calculated percentages in the context of women in science and to identify any trends that the data revealed.

To further improve students’ technological literacy, they were also required to use Excel to graph the number of males who earned bachelor’s degrees in Psychology versus the year (starting in 2001) and the number of males who earned bachelor’s degrees in Engineering versus the year. For both graphs, students were required to find the best linear fit, interpret the meaning of the slope, and use the model to predict future values. Similar questions were asked using the number of females who earned bachelor’s degrees in Psychology versus the year, and students were asked to compare the graphs. Psychology was chosen at random from among the five most popular majors in the U.S. An equally relevant data set could have been drawn from another of the five fields (U.S. Department of Education, National Center for Education Statistics 2015).

The aim of the mini-project was to depict the contrasting trends for female and male Psychology degree holders on the one hand, and for male Psychology and male Engineering degree holders on the other hand. Students were also required to interpret the meaning of the slopes and to rationalize the trends with a critical eye in order to answer a set of questions.

In their essays based on the assignment in Appendix A, students effectively related their personal career choice with what the article stated. The essays contained on average 800 words. Students used data from the table provided by the NSF, along with quantitative information they had calculated, such as the slope, to support their argument and thereby enhance their critical literacy skills.

Survey Results and Assessment

In this section, we analyze the results of the questionnaire survey detailed in Appendix E. Twenty-one students in LIB200 and forty students in the remedial and college algebra mathematics classes participated in an anonymous questionnaire survey after receiving approval from the institution’s review board (IRB) to participate in this project (see Appendix E). The IRB also permitted us to conduct the qualitative research, with or without textual analysis.  In terms of gender, sixty-five percent of participants in the mathematics classes and sixty-two percent of students were found to be first generation college-goers, compared with fifty percent for LIB200. In terms of majors, forty-three percent of participants in the mathematics classes intend to major in a STEM-related field, including nursing and health related areas, with the same percentage for LIB200.

Only thirty-six percent of all participants were aware of the status of women in the sciences prior to taking the class. This was an open-ended Yes/No answer question (see Appendix E, Question 13) and it was left to each student to individually interpret the meaning of “aware.” Furthermore, only six students were able to name even one female scientist. Overall, the outcomes of the survey emphasize the value of the civic engagement aspects of this research, which serve to augment the critical understanding of the societal issue of the lack of women in the sciences and calls for both qualitative and quantitative reasoning skills. The survey also provides scope for students to reflect and critically think about STEM-related fields and why they chose their major and to evaluate their experiences, performance, and problem-solving skills at LaGuardia. It also encourages them to consider whether these skills and experiences are transferable to other subjects and to their future careers. The outcomes of some of the key survey questions are considered below.

How to encourage students to major in STEM

When trying to assess what it would take for students to major in STEM (survey Question 6), students’ responses varied from a scholarship, to the promise of a substantial living upon graduation, to the conviction that no incentive would make them change their mind (see Figure 1).

Students’ attitudes

On a scale of 1 to 4, where 1 means strongly agree and 4 means strongly disagree, a majority of students (sixty-nine percent) believe that STEM-related fields are difficult majors. However, the same percentage of students do not necessarily believe that only smart students can pursue STEM fields, and almost all students agree that anyone can major in STEM fields as long as they study well (see Figure 2). This positive attitude is an indication of the maturity of the students: they all recognize that STEM fields can be difficult but that hard work can lead to success.

The next section highlights some excerpts from students’ essays. Interestingly, they do not corroborate our assumption that family background plays the major role in students’ career choices. Instead, there appear to be several factors that influence the major and career choices of the students.

Who Chooses the Career Path? Excerpts from Students’ Essays

To what extent do social norms, family, and gender expectation determine students’ career choices? We found that our students’ responses were mixed. Family background does have an impact on the career choice of some students, but for others, different factors exert the major influence, such as individual ideas and ambitions, culture (based on societal or geographical background, not just family background), and role models (or the lack of them where women in STEM are concerned). Interestingly, some students also referred to the changing of stereotypes, which are providing more opportunities for women. The males in the class also felt the influence of family and culture in their major and professional career choices but did not experience any stigma or barriers to entering the STEM field, beyond the perception of the difficulty of such subjects. A sample of students’ responses is presented below.

The excerpts are taken from the LIB200 class.

One student wrote:

My parents always told me to choose whatever career I wanted to do, they never decided for me. When I got to college I didn’t know what I was going to study, but just like my parents I was thinking of doing business administration.

Another student stated:

The culture that I am part of has brainwashed women to believing that they should just stick to the simple jobs or just play the role of a housewife. However, despite this deeming [sic] stereotype, women are challenging themselves and wanting to make changes to show that we are equally or even better qualified than men.

A student from the Caribbean Islands stated:

… given my own culture in the Caribbean girls are not subjected to this stigma; girls’ schools allow them to select whatever they feel would give them adequate contentment in terms of career choice. Students who grow up in such settings end up not encountering difficulties in their own studies compared to those of combined schools where both genders study together faced by discouragement.

In her research paper, a student wrote about the importance of analyzing the number of males and females in the STEM field:

We can track inequalities cross-culturally in many different aspects; one way is to take a look at specific careers and the number of females in the field, vs. the number of males in the field. Science and engineering are fields mostly occupied by males, where typically they are respected and given gratification when deserved.

This clearly relates to the assignment conducted by students in the mathematics classes.

The excerpts below are taken from student essays in the college algebra class. Overall, the essays show that students have an appreciation of how to interpret the numerical data in the papers they were given, and they reference the lack of role models to encourage women to enter the STEM field. After each quote below, a deeper textual analysis is provided within the context of the current research question.

One student wrote:

I don’t think culture influenced my career choice but rather it was inspiration and passion…. As the calculation showed, which was to find the percentage of women and men who got their bachelor’s in engineering from 2000 to 2011. I found that there was and is a huge gap, for males there was a 34% increase in earned bachelor’s degrees from 2000 to 2011 while for females the increase was just 20% in earned bachelor’s degrees for engineering. Furthermore my calculation showed that there was a decrease of women getting their degrees in engineering while for males there was in an increase. In 2000 79.5% of males earned their bachelor’s degree in engineering, while 20.5% of females got theirs. And in 2011 81.2% of males got their degrees in engineering, while 18.2% of females got theirs, this shows that more and more females are quitting the STEM field. But one of the things that surprised was the difference of earned psychology degrees for females and males; there are more females earning their bachelor’s degrees in psychology than males. As the graph showed on my project, the value of slope for the females earning their bachelor’s degrees is 1984, while the graph for males earning their bachelor’s degrees in psychology shows a slope value of 662, that means that the increase of earned psychology degrees for females is 1984 each year while for males the increase is 662 each year. Why is it female presence in engineering is decreasing, while for psychology it is increasing?”

By “this shows that more and more females are quitting the STEM field,” the student meant to say that although the number of female degree holders in some STEM fields has increased, this increase is much lower percentage-wise than the corresponding increase of male STEM degree holders. Within the framework of the research question, the data provided encourages students to interpret numbers in their context, a point discussed in class as a follow-up.

Another student related her experience to the data analyzed in a similar manner.

Now that I am planning to transfer to a four-year school I meet with my counselor every month to discuss the career path I may choose. Just like her, she constantly recommends me to choose psychology. She never mentioned to me to consider science. She is a female who did psychology and I think she believes that it is better for me as a female to do psychology too. In the table of earned bachelor’s from 2000 to 2011 it is clear that more females than males are more likely to pursue a degree in psychology. The average of females who earned bachelor’s degrees in psychology per year is 1,984 while the average of males is 662.

It is clear from the essays that students mastered the use of trends and numbers in their context. In qualitative terms, most students were able to generate appropriate percentages and linear slopes from the data and interpret these values in the context of gender issues and stereotypes in the STEM field. It was also interesting to note that the female counselor did not recommend that her female student major in the sciences. What is the bias playing against both of them? This testimony is a clear indication that a lack of awareness of cultural biases against women in the sciences could not only reinforce gender stereotypes in terms of career choices and majors, but also hinder the efforts to bring more females to STEM.

The absence of female figures who could act as role models to advocate for a more female-inclusive approach was brought up by students in the college algebra class:

The trends of fewer women entering the field of engineering has obviously impacted their status in society in several ways. If there are fewer women in the STEM world, women will have less influence and power to encourage other women in society to pursue science degrees and careers.

This remark is corroborated by a statement made by an LIB200 student, who dedicated her research paper to the iconic figure in genetic mutations, Barbara McClintock:

For women the fields of science and engineering can be a lonely and obstacle-filled career path. We often forget the remarkable achievement of women and barely give them recognition where is due. Too often do we ignore and forget female role models.

Conclusion

As evidenced by class discussions and students’ assignments and responses to surveys, the instructional objectives of our interdisciplinary civic collaboration have been thoroughly explored. Our first objective was to determine family influence on majoring in STEM and choosing a career. The surveys provided the answer that perhaps cultural biases and the lack of female role models in the sciences were stronger influences. In fact, a significant number of students argued that family had no influence on their choices. Overall, there was no single influence that stood out as the most critical in the students’ decision-making process.

Although we acknowledge that students’ decisions exhibit a level of agency, we believe that their perceptions reflect a lack awareness of how deeply decisions and choices are embedded in culture. This leads to our second objective: to bring awareness to women’s absence in STEM. Students discussed this issue at length with the three of us. They had specific assignments on the topic, and two students dedicated their research paper to specific women scientists.

Within the action research format, the assignments and the interactions that LIB200 students had with the three professors led to deep class discussions on the detrimental factors that prevent women from fully embracing STEM majors and careers. Contributions from students ranged from cultural issues, whether things are changing now or will change in the foreseeable future, and what we can do to encourage more women into the sciences. The NS faculty member was particularly inspired by several very personal comments from students in the class regarding not only the impact on the research question from the culture of their country of origin, but also from their specific family backgrounds. He thought these students were extremely brave to air such perspectives in“public” and found the whole session very rewarding and thoroughly enjoyed the experience.

Based on such class discussions in the MEC and LIB200 classes, it appears that students lack exposure to literature about women in STEM. We therefore call for educating students in order to bring awareness to this civic issue. However, the education of students in this context goes hand in hand with educating faculty, who may also be unaware of this situation. Indeed, a student testimony shared with us how, surprisingly, a female college counselor deterred her from pursuing a major in STEM and guided her into majoring in her own field, i.e. psychology. This leads us to wonder: to what extent is higher education reinforcing gender stereotypes when it comes to career choices? These biases bear close similarity to those portrayed in Pollack’s New York Times article (Pollack 2013). A relevant future study would be to explore whether infusing higher education with appropriate role models would successfully influence students’ future academic and professional choices.

In order to address the above matter, we suggest that increasing exposure to women in STEM should be done across curricula by having an open discussion about the problem and by suggesting readings in freshman seminars focused on the issue. Another solution would be to provide students, especially female students, with female role models who could act as mentors. Research shows that lack of mentoring limits women’s career opportunities, particularly in STEM areas. The aim of the mentor- ing system is to help guide the career of a junior member of the organization by sharing knowledge about how to succeed (Burn 2010). Mentoring is important in that it helps the junior employee to have access to promotions, career mobility, and better compensation (Ragins 1999). Advocacy for providing young women with personal sup- port, job-related information, and career developmental support from their supervisors is backed by research (Bhatnagar 1988; Cianni and Romberger 1995; Noe 1988). Our collaborative research project shows that with the appropriate sensibilization to the situation and context, students took interest in the field of women in the sci- ences, as evidenced by class discussions, assignments, and research papers dedicated to the topic.

About the Authors

Habiba Boumlik, who holds a Ph.D. in social and cultural anthropology, also holds an M.A. in Arabic and Islamic studies and a B.A. in French as a foreign language. Her academic background and teaching experience include Arabic and French languages and literatures, cultural anthropology, women cross-culturally, Middle Eastern history, and Arab cinema.

Reem Jaafar holds a Ph.D. in theoretical physics from the CUNY Graduate School (2010). In 2010, she joined the Math, Engineering, and Computer Science Department at LaGuardia Community College as an assistant professor and was promoted to associate professor in 2013. During her tenure at LaGuardia, she has been the recipient of three grants, cofounded the Math Society, and invested in students’ excellence at LaGuardia by training them to compete in regional and national mathematics competitions and by organizing STEM talks and workshops. She has coauthored thirteen papers in peer-reviewed journals and has presented her work in theoretical physics and mathematics pedagogy at over fourteen conferences.

Ian Alberts holds a Ph.D. in theoretical chemistry from Cambridge University, UK, and an MBA with Distinction from the Open University, UK. His academic background comprises teaching chemistry in British and American universities, including courses ranging from introductory to final year undergraduate and graduate level. He has also mentored undergraduate and graduate students in STEM-based research projects, published more than 40 papers in prestigious, high-impact peer-reviewed scientific journals, and has been the recipient of several research-based grants and awards.

References

American Association of University Women (AAUW). 1998. “Separated by Sex: A Critical Look at Single Sex Education for Girls.” Washington D.C.: AAUW Educational Foundation.

AWIS (Association of Women in Science). 2010. “Gender Disparities in STEM Awards & Recognition Hinder the Advancement and Retention of Women.” http://c.ymcdn.com/ sites/awis.site-ym.com/resource/resmgr/Fact_Sheets/AWIS_ AWARDS_FACT_SHEET_SERIE.pdf (accessed January 6, 2016).

Barad, K. 1995. “A Feminist Approach to Teaching Quantum Mechanics.” In Teaching the Majority: Breaking the Gender Barrier in Science, Mathematics, and Engineering, S. V. Rosser, ed. New York: Teachers College Press.

Barton, A.C. 1997. “Liberatory Science Education.” Curriculum Inquiry 27:141–63.

Betne, P. 2010. “Project Quantum Leap and SENCER at LaGuardia Community College.” Science Education and Civic Engagement: An International Journal 2 (2): 12–16. http://seceij.net/seceij/summer10/project_quantum.html (accessed January 6, 2016).

Bhatnagar, D. 1988. “Professional Women in Organizations: New Paradigms for Research and Action.” Sex Roles 18: 343–55.

Brickhouse, N.W. 2001. “Embodying Science: A Feminist Perspective on Learning.” Journal of Research in Science Teaching 38 (3): 282–95.

Brotman, J.S., and F.M. Moore. 2008. “Girls and Science: A Review of Four Themes in the Science Education Literature.” Journal of Research in Science Teaching 45 (9): 971–1002.

Burn, S.M. 2010. Women Across Cultures. A Global Perspective. 3rd ed. New York: McGraw Hill Higher Education.

Catsambis, S. 1995. “Gender, Race, Ethnicity, and Science Education in the Middle Grades.” Journal of Research in Science Teaching 32 (3): 243–57.

Ceci, S.J., W.M. Williams, and S.M Barnett. 2009. “Women’s Underrepresentation in Science: Sociological and Biological Considerations.” Psychological Bulletin 135 (2): 218–61.

Cianni, M., and B. Romberger. 1995. “Perceived Racial, Ethnic, and Gender Differences in Access to Developmental Experiences.” Group and Organization Management 20: 440–59.

De Welde, K., S. Laursen, and H. Thiry. 2007. “Women in STEM (Science, Technology, Engineering, and Math): A Fact Sheet.” The Newsletter for Sociologists for Women in Society 23 (4): 14–19.

Devine, P.G. 1989. “Stereotypes and Prejudice: Their Automatic and Controlled Components.” Journal of Personality and Social Psychology 56 (1): 5–18.

Dykes, T.H., P.A. Rodgers, and M. Smyth. 2008. “ Towards a New Disciplinary Framework for Contemporary Creative Design Practice.” CoDesign: International Journal of CoCreation in Design and the Arts 5 (2): 99–116.

Educate to Innovate. 2013. http://www.whitehouse.gov/issues/ education/k-12/educate-innovate (accessed January 6, 2016).

González-Arevalo, B., and M. Pivarski. 2013. “The Real World Connection: Incorporating Semester-Long Projects into Calculus II.” Science Education and Civic Engagement: An International Journal 5 (1): 17–24. http://seceij.net/seceij/winter13/real_world_conn.html (accessed January 6, 2016).

Hammerman, N., and R. Goldberg. 2003. “Strategies for Developmental Mathematics at the College Level.” Mathematics and Computer Education 37(1): 79–95.

Hekman, S.J. 1990. “Gender and Knowledge: Elements of Postmodern Feminism.” Boston: Northeastern University Press.

Hill, C., C. Corbett, and A. St. Rose. 2013. “Why So Few? Women in Science, Technology, Engineering, and Mathematics. “ Washington, DC: American Association of University Women. http://www.aauw.org/files/2013/02/Why-So-Few-Women-in-Science-Technology-Engineering-and-Mathematics.pdf. (Accessed January 6, 2016).

Jaafar, R. 2012. “Incorporating Quantitative Reasoning and Civic Engagement in a College Algebra Course through a Lesson on Interest Rates, Debt and Student Loan.” Science Education and Civic Engagement: An International Journal 4 (1): 80–91. http://seceij.net/seceij/winter12/incorporating_q.html (accessed January 6, 2016).

Kasi Jackson, J., and J. Caldwell. 2011. “Feminist Interventions in Less Than Feminist Spaces.” Science Education and Civic Engagement: An International Journal 3 (1): 26–35. http://seceij. net/seceij/winter11/feminist_interv.html (accessed January 6, 2016).

Kayaoglu, M.N. 2015. “ Teacher Researchers in Action Research in a Heavily Centralized Education System.” Education Action Research 23 ( 2): 140–61.

Keller, E.F. 1985. Reflections on Gender and Science. New Haven, CT: Yale University Press.

Knight, D.B., E.F. Mappen, and S.L. Knight. 2011. “A Review of the Literature on Increasing the Representation of Women Undergraduates in STEM Disciplines through

Civic Engagement Pedagogies.” Science Education and Civic Engagement: An International Journal 3 1: 36–47.

Lattuca, L.R. 2001 Creating Interdisciplinarity: Interdisciplinary Research and Teaching among College and University Faculty. Nashville: Vanderbilt University Press.

Martin, J.R. 1991. “What Should Science Education Do About the Gender Bias in Science?” In History, Philosophy and Science Teaching, M. Matthews, ed. New York: Teachers College Press.

Miller, P.H., J.S. Blessing, and S. Schwartz. 2006. “Gender Differences in High-School Students’ Views about Science.” International Journal of Science Education 28 (4): 363–81.

Moss-Racusin, C.A., J. Dovidio, V.L. Brescoll, M.J. Graham, and J. Handelsma 2012. “Science Faculty’s Subtle Gender Biases Favor Male Students.” Proceedings of the National Academy of Sciences 109 (12): 16474–79.

Noe, R.A. 1988. “Women and Mentoring: A Review and Research Agenda.” Academy of Management Review 13: 65–78.

NSF (National Science Foundation). 2010a. “ Table 9-1. Employment Status and Median Salary of 2008 and 2009 Science, Engineering, and Health Doctoral Degree Recipients, by Broad Field of Doctorate, Sex, Race/Ethnicity, and Disability Status: 2010.” http://www.nsf.gov/statistics/wmpd/2013/pdf/tab9-15. pdf (accessed January 6, 2016).

NSF (National Science Foundation). 2010b. “Appendix Table 2-17. Earned Bachelor’s Degrees, by Sex and Field: 2000-11.” http:// www.nsf.gov/statistics/seind14/content/chapter-2/at02-17.pdf (accessed January 6, 2016).

NSF (National Science Foundation). 2010c. “Appendix Table 2-40. Earned S&E Doctoral Degrees, by Sex, Selected Region/ Country/Economy, and Field: 2010 or Most Recent Year.” http://www.nsf.gov/statistics/seind14/content/chapter-2/at02- 40.pdf (accessed January 6, 2016).

NSF (National Science Foundation). 2012a. “ Table 5-2. Bachelor’s Degrees Awarded, by Field and Sex: 2002–2012. http://www. nsf.gov/statistics/wmpd/2013/pdf/tab5-2_updated_2014_05. pdf (accessed January 6, 2016).

NSF (National Science Foundation). 2012b. “ Table 3-1. S&E Graduate Students, by Field, Sex, Race, and Ethnicity: 2012. http://www.nsf.gov/statistics/wmpd/2013/pdf/tab3-1_ updated_2014_10.pdf (accessed January 6, 2016).

NSF (National Science Foundation). 2014. Women, Minorities, and Persons with Disabilities in Science and Engineering. http://www.nsf.gov/statistics/wmpd/2013/tables.cfm (accessed January 6, 2016).

Olcese, E., G. Kobylski, J. Shannon, and C. Elliott. 2014. “Meeting the Challenge of Inderdisciplinary Assessment.” Science Education and Civic Engagement: An International Journal 6 (2): 11–25. http://seceij.net/seceij/summer14/meeting_challen.html (accessed January 6, 2016).

Pagano, J.A. 1988. “ Teaching Women.” Educational Theory 38: 321–40.

Pollack, E. 2013. “Why Are There Still So Few Women in Science?” The New York Times Magazine. http://www.nytimes. com/2013/10/06/magazine/why-are-there-still-so-few-women- in-science.html?pagewanted=all (accessed January 6, 2016).

Ragins, B.R. 1999. “Gender and Mentoring Relationships: A Review and Research Agenda for the Next Decade.” In Handbook of Gender and Work, edited by G.N. Powell, 347–71. Thousand Oaks, CA: Sage.

Report to the President. 2010. Prepare and Inspire. K-12 Education in Science, Technology, Engineering, and Math (STEM) for America’s Future. https://www.whitehouse.gov/sites/default/ files/microsites/ostp/pcast-stemed-report.pdf. (accessed January 6, 2016).

Rosser, S.V. 1986. “ Teaching Science and Health from a Feminist Perspective: A Practical Guide.” Elmsford, NY: Pergamon Press.

Savin-Baden, M., and C. Howell Major. 2013. Qualitative Research: The Essential Guide to Theory and Practice. London and New York: Routledge.

Science Education for New Civic Engagements and Responsibilities.“SENCER-Home.” http://www.sencer.net/ (accessed January 6, 2016).

Seymour, E. 1995. “The Loss of Women from Science, Mathematics, and Engineering Undergraduate Majors: An Explanatory Account.” Science Education 79: 437–73.

Thomas, B. 2013. “Why the Status of Women in STEM Fields Needs to Change”, Soapbox Science. http://blogs.nature.com/ soapboxscience/2013/03/06/why-the-status-of-women-in- stem-fields-needs-to-change (accessed January 6, 2016).

Understanding Gender. 2015. “The Gender Spectrum.” https:// www.genderspectrum.org/quick-links/understanding-gender/ (accessed January 6, 2016).

U.S. Department of Education, National Center for Education Statistics. 2015. Digest of Education Statistics, 2013. NCES 2015-011.

U.S. Executive Office of the President, Office of Science and Technology Policy. 2013. Women and Girls in Science, Technology, Engineering, and Math (STEM). http://www. whitehouse.gov/sites/default/files/microsites/ostp/stem_ factsheet_2013_07232013.pdf (accessed January 6, 2016).

Wall, S., and I. Shankar. 2008 “Adventures in Transdisciplinary Learning.” Studies in Higher Education 33 (5): 551–65.

Whatley, M.H. 1985. “ Taking Feminist Science to the Classroom: Where Do we Go from Here?” In Feminist Approaches to Science, R. Bleier, ed., 181–190. New York: Pergamon.

Download (PDF, 772KB)

Scientific Examination of Cultural Heritage Raises Awareness in Local Communities: The Case of the Newly Discovered Cycle of Mural Paintings in the Crucifix Chapel (Italy)

Antonino Cosentino,
Cultural Heritage Science Open Source

Abstract

The preservation and conservation of cultural heritage material is matter of increasing civic importance, particularly in communities where public resources are scarce. Although this issue is generally considered a challenge for the humanities, scientific research also plays an invaluable and unique role in promoting and preserving cultural heritage in local communities. Because of recent advances in technology and methods of scientific analysis, a deeper understanding of fine art works can be achieved than was ever possible by a simple visual examination. Questions that were once difficult to answer, including precise materials and techniques or original and restored areas, can now be clarified through relatively straightforward scientific experiments using accessible technology. This development opens a new and fruitful avenue for enriching science education, in both formal and informal contexts, through the lens of a pressing civic issue: the investigation and preservation of endangered aspects of local history and culture.

This paper describes the scientific studies carried out on a cycle of 18th-century wall paintings discovered in 2012 in a small Italian village. An international team of research institutes (USA, Denmark, Portugal, and Italy) were involved in the technical examination of the cycle. The scientific findings, which were presented to the local community during a public conference, raised awareness of the value and significance of their unique cultural assets. This represents a successful model for civically engaged science that can bring international expertise to bear on a specific challenge to a local community.

Civically Engaged Science to Preserve Local Art and Archaeology

The preservation of cultural heritage is a critical civic responsibility, especially in Italy where the vast array of cultural treasures ranges from the renowned mega-cities of Rome, Florence, and Venice to almost every village. This rich distribution of material culture demands local civic engagement simply because national and governmental institutions alone cannot effectively manage the sheer quantity and scope of artistic and archaeologic heritage sites. Consequently, the role played by local advocates and organizations is critical, though not always obvious to communities faced with other pressing needs. Advocacy and public education is needed to shed light on the connection between civic and economic wellbeing and the preservation and protection of cultural heritage (Bonacini et al. 2014). In Italy, as well as in other European countries, there have been significant cuts to public funding for art conservation. It is therefore more urgent than ever that local communities mobilize and provide adequate financing to appropriately conserve and maintain their cultural heritage.

Cultural Heritage Science (CHS) is a discipline that examines works of art and archaeology by means of technical and scientific methodologies. Information derived from these studies is used to understand not only when these artifacts were made, who made them, and how they were made but also, more importantly, how are they to be preserved, and what conservation treatment represents the best option and why. As a scientific practice CHS must draw on a wide range of disciplines and fields beyond the sciences, including history, art history, archeology, ethics, public policy, and law. This article outlines a project in Italy to promote the conservation of a cycle of early 18-century mural paintings. It discloses the role of Cultural Heritage Science in raising community awareness of material culture as a civic asset, as well as awareness of the importance of science and technology to the preservation of cultural heritage.

Innovative, Affordable, and Sustainable Scientific Methods

Scientific examination and documentation of art is notoriously expensive. The most important and recognizable works of art are subjected to extensive scientific examination by highly trained experts, using state-of-the-art equipment that costs millions of dollars. This is clearly an impossible goal for the conservation and preservation of the vast majority of cultural heritage objects, which may not be rare or distinguished by global standards but are nonetheless critical to the identity and history of local communities, most of which lack the financial and technical resources of major capitals and their world-class museums. These large museums house “priceless” collections and maintain conservation departments equipped with cutting-edge technologies. In contrast, small to medium-sized cultural institutions have relatively limited access to advanced science and technology and conservation expertise.

Cultural Heritage Science Open Source (CHSOS) was launched in 2012 to bridge this technological divide, to develop and disseminate affordable and sustainable methodologies for art examination that can reach a much larger constituency of local cultural institutions This search for low-cost art examination and documentation is a rapidly expanding research topic, and a growing number of scholars are exploring affordable technical solutions for historical architecture documentation (Santagati et al. 2013). CHSOS disseminates methods for art examination in three significant ways, focusing specifically on low-cost technical solutions: through its popular blog, through publications in open access peer reviewed journals, and through training programs. The CHSOS blog has attracted a growing network of art conservation professionals interested in introducing Cultural Heritage Science concepts into their work. The blog has also inspired collaborative field projects with local stakeholders, such as the Catacombs in Syracuse (Cosentino et al. 2015; Stout et al. 2014) and the Sicilian carts museum (Cosentino and Stout 2014).

The Crucifix Chapel

A cycle of 18-century mural paintings was revealed in 2012 during maintenance work in the Crucifix Chapel of the Mother Church in Aci Sant’Antonio, Italy. The paintings have survived along the corners of the originally square chapel that was later altered, acquiring the current octagonal-shaped construction. All of the murals except the scenes on the corners have been destroyed and irretrievably lost (Figure 1).

CHSOS Studio is located in Aci Sant’Antonio. This discovery in the local chapel was selected as a pilot study to determine whether scientific research can promote better care of cultural heritage, even when financial resources are limited and the heritage material is of local, rather than regional or national, significance. From the moment of their discovery it was clear that the newly discovered murals were in critical need of conservation treatment. CHSOS advertised and solicited the international academic community for help in performing an accurate scientific assessment of the murals, which ultimately resulted in a well documented, informed conservation treatment strategy. The mural paintings were first   documented in 2013 by CHSOS using technical photography (TP) (visible, raking light, infrared, ultraviolet fluorescence, and infrared false color).

TP represents a collection of broadband spectral images realized with a modified full spectrum digital camera and using different lighting sources and filters to acquire images useful for art diagnostics. TP imaging methods are non-destructive, fast, and use relatively inexpensive equipment and tools. CHSOS donated the time needed to perform the initial examination. The results served as a catalyst that gained the cooperation of three universities. A doctoral candidate at University of California San Diego (USA), Samantha Stout, provided on-site analytical pigment studies, which used a portable XRF spectroscopy system; analysis of paint fragments were provided by researcher Milene Gil from the Hercules laboratory at the University of Evora (Portugal), using optical microscopy, scanning electronic microscopy with x-ray spectrometry (SEM- EDS), X-ray diffraction (XRD) and µFT-IR; and finally, Terahertz examination of the plaster work was performed by Danish Technical University (Denmark) doctoral student Corinna Koch Dandolo.

This international collaboration has resulted in peer- reviewed publications (Cosentino et al. 2014a; Cosentino et al. 2014b). The data were subsequently used to formulate a conservation intervention strategy that was presented in 2015 to the community of Aci Sant’Antonio at a conference where the project collaborators reported their findings.

Participants greatly benefited from all aspects of this unique research endeavor. International graduate students and scholars were drawn to Italy because of the abundance of cultural heritage objects and locations, which represent a unique opportunity to test their technical methodologies and learn first-hand about traditional western historical art materials. In turn, members of the local community benefited from their expertise and were informed of the significant artistic features present within the discovered cycle. The scientific research effectively engaged the local community, and the conference helped raise funds for the eventual cleaning and conservation of the paintings. This project, then, represents a successful model of the public communication of science: the active process of scientific inquiry raised local community awareness and appreciation to a level that generated the financial support that was needed to professionally treat and preserve the art object (figure 2).

The local community setting encouraged an explanation of the findings that was straightforward and avoided unnecessary technical jargon. More significantly, in this scientific investigation context, it was TP (technical photography) that led the way. TP proved to be the most cost effective of the methods used and is capable of providing a great deal of information on the painting technique (figure 3). TP is also the most appealing for a non-specialized audience, as the images convey the findings more easily.

The analysis of seven plaster wall fragments revealed that an a secco technique (use of an organic binder rather than the fresco method) was used for the wall paintings (figure 4). The analysis also revealed large areas of repainting using modern pigments applied directly over the original paint layer (figure 5).

Conclusions and Implications for Science Education

Scientific research on the newly discovered wall painting cycle in Aci Sant’Antonio (Italy) illustrates that cultural heritage science methodologies can be used successfully to promote the conservation of art and archaeology, even in poorly funded local communities. The initial findings, detailed visually through technical photography coupled with portable and benchtop spectroscopic methods, proved a successful means to raise awareness of the relevance of science to the community’s identity and history, and to the preservation needs of its specific cultural heritage material. The ability of modern scientific methods to provide evidence and increase public knowledge provided the political and financial leverage needed to take action.

Appropriately, the public conference was held in the same church where the mural paintings are located. Here in this setting the local community participated in an integrated learning experience that spanned both science and humanities, providing information about the painting technique and materials used by the original painter and by the others who, centuries later, retouched the paintings. In this specific case the research for this project was achieved without a direct financial contribution from the community. Indeed, the case study was such a compelling educational opportunity that three major foreign universities donated financial resources and provided Ph.D. students to perform the examination. All participants benefited. The conservation scientists worked together as an international team, comparing notes on the data they obtained with complementary equipment. Today the local community better understands the importance of their newly discovered cultural treasure and is justifiably more proud of it. And the results have proven contagious. Soon after the papers were published, CHSOS was contacted by the community of another village in Sicily, which had followed the Crucifix Chapel studies and now desired to replicate the same model to promote the conservation of mural paintings in one of their medieval churches.

The next step for CHSOS will be to integrate the formal and informal learning environments by extending the academic participation in this initiative through a summer school program for undergraduate students. This project, which will teach rigorous science content“through” the civic challenge of preserving local cultural heritage, will be offered to U.S. college students who are interested in integrating the study of science with art history, archeology, and material culture studies. It will be based on the training programs that CHSOS has offered to professionals and graduate students, and it will be fully hands-on, bringing students to work on selected field projects that conserve Italian art and archaeology while engaging communities in the preservation of their cultural heritage.

About the Author

Dr. Antonino Cosentino founded CHSOS in 2012. Before directing CHSOS he taught“Scientific Methods for Art Investigation” in Italy and at the Pratt Institute in New York and carried out scientific examinations of important works of art as a researcher for European and American institutions such as the European Mobile Laboratory for Art investigation (MOLAB), the New York’s Metropolitan Museum of Art (A.W. Mellon Fellow in Conservation Science) and the University of California San Diego.

References

Bonacini, E.M., M. Marcucci, and F. Todisco. 2014. “#DIGITALINVASIONS. A Bottom-up Crowd Example of Cultural Value Co-creation.” In Information Technologies for Epigraphy and Digital Cultural Heritage: Proceedings of the First EAGLE International Conference, S. Orlandi, R. Santucci, Casarosa, and P.M. Liuzzo, eds., 265–84. Sapienza: Università Editrice.

Cosentino, A. 2013a. “Eventually I Got Viral.” News in Conservation 34 (February): 20–22.

Cosentino, A. 2013b. “Get Out of the Lab, Now!” News in Conservation 39 (December): 14–16.

Cosentino, A. 2013c. “Macro Photography for Reflectance Transformation Imaging: A Practical Guide to the Highlights Method.” e-conservation journal 1: 70–85.

Cosentino, A. 2013d. “A Practical Guide to Panoramic Multispectral Imaging” e-conservation magazine 25: 64–73.

Cosentino, A. 2014a. “FORS Spectral Database of Historical Pigments in Different Binders.” e-conservation journal 2: 53–65.

Cosentino A. 2014b. “Identification of Pigments by Multispectral Imaging: A Flowchart Method.” Heritage Science 2: 8.

Cosentino, A. 2014c. “Panoramic Infrared Reflectography. Technical Recommendations.” International Journal of Conservation Sci- ence 5 (1): 51–60.

Cosentino A., and S. Stout. 2014. “Photoshop and Multispectral Imaging for Art Documentation.” e-Preservation Science 11: 91–98.

Cosentino, A., M.C. Caggiani, G. Ruggiero, and F. Salvemini. 2014a. “Panoramic Multispectral Imaging: Training and Case Studies.” Belgian Association of Conservators Bulletin, 2nd Trimester: 7–11.

Cosentino A., S. Stout, R. Di Mauro, and C. Perondi. 2014b. “The Crucifix Chapel of Aci Sant’Antonio: Newly Discovered Frescoes.” Archeomatica 2: 36–42.

Cosentino A., M. Gil, M. Ribeiro, and R. Di Mauro. 2014c. “Technical Photography for Mural Paintings: The Newly Discovered Frescoes in Aci Sant’Antonio (Sicily, Italy).” Conservar Património 20: 23–33.

Cosentino A. 2015. “Multispectral Imaging and the Art Expert.” Spectroscopy Europe 27 (2): 6–9.

Cosentino A., S. Stout, and C. Scandurra. 2015. “Innovative Imaging Techniques for Examination and Documentation of Mural Paintings and Historical Graffiti in the Catacombs of San Giovanni, Syracuse.” International Journal of Conservation Science 6 (1): 23–34.

Hogan, H. 2015. “Spectroscopy: Going Small to Get the Whole Picture.” Photonics Spectra, March 2015.

Santagati, C., L. Inzerillo, and F. Di Paola. 2013. “Image-Based Modeling Techniques For Architectural Heritage 3D Digitalization: Limits and Potentialities.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5/W2: 555–60.

Stout S., A. Cosentino, C. Scandurra. 2014. “Non-invasive Materials Analysis Using Portable X-ray Fluorescence (XRF) in the Examination of Two Mural Paintings in the Catacombs of San Giovanni, Syracuse.” Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. 5th International Conference, EuroMed 2014, M. Ioannides, N. Magnenat-Thalmann, E. Fink, R. Žarnić, A.-Y. Yen, E. Quak, eds., 697–705. Cham, Switzerland: Springer.

Download (PDF, 2.03MB)

 

The Use of Untested Drugs to Treat the Ebola Virus Epidemic: A Learning Activity to Engage Learners

Abour H. Cherif,
American Association of University Administrators and American Community Schools
Jasper Marc Bondoc,
University of Illinois at Chicago
Ryan Patwell,
University of Illinois at Chicago
Matthew Bruder,
DeVry University
Farahnaz Movahedzadeh,
Harold Washington College and University of Illinois at Chicago

Abstract

One objective of this activity is to help students understand an Ebola virus outbreak and epidemic, and particularly how this might affect human life and society within and between various human communities, not only in a given country or society, but also on an international scale. A second objective is to actively engage students in a library investigation, conducting literature research, and collaborating in group work, not only to achieve understanding, but also to retain new information and apply what has been learned to different situations. The aim is to provide an opportunity for students to become deep learners by engaging in active learning. The paper is divided into two parts. Part one provides background on the nature, character, and epidemic of Ebola and the impact of the last outbreak not only on the affected regions, but also on the whole world. Part two is a learning activity that is designed as a role-playing exercise to engage students in research to learn about the biology behind Ebola. They also debate the question of whether or not the use of drugs and Ebola vaccines that have not gone through the clinical trial process should be used to control the epidemic before it can no longer be contained. The willingness to bypass government approval of treatments and scientific and clinical practices demonstrates the severity of this outbreak and the desperation it has caused. Yet there are good reasons why clinical trials are essential in obtaining objective evaluations of the effectiveness of treatments. In conducting research on the topic and engaging students in an informative debate about the matter, we hope to promote deep learning and a lasting understanding of viruses in general and Ebola in particular. An Ebola epidemic is a good vehicle to introduce students to the need for civic and community engagement at the local, national, and global level by extending student learning beyond the classroom and into the community.

Part 1 – Ebola: Its Nature, Character, and Epidemic

Introduction

The recent Ebola outbreak in West Africa (Figure 1) has placed various governments, non-government organizations, and communities at local, national, and international levels in situations that they have never faced According to the World Health Organization (WHO), if left untreated, Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever, is a severe, often fatal illness in humans, further spread through contact with bodily fluids (WHO 2014, 1). Initial EVD outbreaks typically start in rural areas but quickly spread to urban centers with larger populations, further compounding the need for consideration of human needs and proper scientific investigation (Quammen 2015; Wolinksy 2015).

A dilemma that had previously been considered “unthinkable” seemed to call for desperate measures, including “withholding emergency treatment from infected patients” and using drugs that have not yet gone through clinical trials to treat infection. As a result, hospitals all over the world have started to review their policies on the treatment, handling, and screening of patients with the virus. This is due first to the lack of trained health care workers to care for potential patients, and second, to the high risk of transmission to health care workers in contact with Ebola patients (The Week 2014). Finally, it is important to note that there is a widespread assumption that if an Ebola outbreak occurred in a wealthy developed nation, the response would be swifter and more comprehensive than the current response in affected countries of West Africa ( Joanne Lin in Marsa 2016). This assumption only further complicates the ethical issues at hand. Adding to the complexity of the situation is the fact that the “urgency of human needs in an outbreak makes scientific investigations difficult” (Quammen 2015, 52).

The development of therapies to combat the virus has been an ongoing process; “there is as yet no licensed treatment proven to neutralize the virus, but a range of blood, immunological and drug therapies are under development. There are currently no licensed Ebola vaccines, but multiple candidates are undergoing evaluation” (WHO 2014, 1). For many human advocates and civic engagement activists, the current medical options available are not acceptable. Lack of insight into the drug development process also results in public distress which further compounds the issue. Furthermore, as Joanne Lin, the president of Médecins Sans Frontières International in Geneva, Switzerland, stated:

Initially, we told people it’s a deadly disease and we have no cure, so essentially we’re telling them “Come and die in an Ebola Center.” We need to change that because if these people come in earlier, they have a better chance to pull through and not infect their loved ones. We know what to do because it’s like HIV and AIDS two decades ago – it was a death sentence, and people hid from it. But today it is not a death sentence, and we need to apply what we learned from fighting that epidemic. (Marsa 2016, 17)

The Biology of the Virus

A virus is a non-cellular infectious agent, typically 20 to 30 nanometers in diameter (Ebola being exceptionally large, at 970 nanometers), which typically consists of a genome encased in a protein coat. As an extracellular entity, it is given the term viroid. The viral genome contains either DNA or RNA. Many viruses have additional structural features, for example, an envelope composed of a protein-containing lipid bilayer, whose presence or absence classifies viruses as either enveloped virus or non-enveloped virus (Strohl et al. 2001; Tortora et al. 2015).

As they lack ribosomes or other necessary protein- making machinery, viruses do not have the ability to grow or replicate on their own, but only do so inside the cells of living hosts by subverting their cellular machinery. They are thus considered obligatory intracellular parasites (Strohl et al. 2001; Tortora et al. 2015). The host cell would be unable to carry out normal function, reproduce, and would typically die. With the ability to replicate within cells of living hosts, viruses are able to generate great diversity, giving rise to various forms, such as RNA virus, DNA virus, viroid, etc. (Rudin 1997, 385). Today, scientists classify viruses into families based primarily on the type of genome, capsid symmetry, and the presence or absence of an envelope (Strohl et al. 2001; Tortora et al. 2015). For example, scientists have identified the families seen in Table 1 below.

The Ebola virus belongs to the family Filoviridae; its members are enveloped viruses with RNA genomes. The Filoviridae family has three genera: Cuevavirus, Marburgvirus, and Ebolavirus. Five species of Ebolavirus have been identified thus far: Zaire, Bundibugyo, Sudan, Reston, and Taï Forest. Zaire, Bundibugyo, and Sudan are the Ebola viruses that have been associated with large outbreaks in Africa, with Zaire currently causing the West African epidemic (WHO 2014, 2).

The differences within the species of the Ebola virus are significant. The Reston species has never caused illness in humans, and researchers have never found definitive evidence of air-based transmission. Zaire Ebola virus, on the other hand, does cause illness in humans. A non- airborne infection, it spreads by direct contact with body fluids (Science News 2014, 30).

Thus based on Table 1, we can summarize that Ebola is

A member of the Filoviridae family of viruses (so named because the viruses adopt various filamentous shapes), the Ebola virus consists of a single strand of RNA and associated proteins, wrapped in a fatty membrane. Scientists have so far isolated two members of the family — Ebola and Marburg viruses — and grown them in culture. Genes from a third member – Lloviu virus – have been sequenced, but the virus has not yet been fully characterized in a laboratory. Of the five known strains of Ebola, Reston is the only one that apparently does not cause disease in infected people. (Branswell 2015, 52)

The Life Cycle of a Virus

Most viruses exhibit similar behaviors during their lifespan. As shown in Table 2, at each stage the virus tries to accomplish a specific set of tasks. Some viruses undergo a more dormant lysogenic cycle, in which the infection still controls the systems of the cell and often inhibits its function, but does not kill the host cell. In many cases, a cell’s death results when the virus takes up the lytic cycle, either after a lysogenic phase or immediately. The steps to replication are described in Table 3.

Like most other untreated viruses, Ebola virus successfully completes replication and generates more copies of itself in four general steps.

  1. Using surface proteins Ebola virus recognizes and attaches to cells in the host It fuses with cells lining respiratory tract, eyes, or body cavities, then penetrates the membrane of the host cells and sheds its protein coat.
  2. The virus’s genetic content (viral nucleic acid [RNA]) is released into the cell and enters the host cell
  3. The viral genetic material takes over the cell machinery to replicate new viral nucleic acid, which then goes from the nucleus into the cytoplasm and combines with structural proteins to form new viruses. In other words, they become physically and functionally incorporated into host cell (Adams 2014; Hart al. 2012).
  4. The newly produced copies of the virus are broken off and expelled from the host cell into the system to infect more cells and hijack their metabolic machinery systems to manufacture instead more of the viral components needed to form more of the new viruses.

As the immune and circulatory systems are compromised, the pathogen is free to proliferate and furthermore given new opportunities to affect more people as blood is lost (Branswell 2015, 52). The World Health Organization has strongly argued that the most critical keys to the treatment of the Ebola epidemic include, but are not limited to, the following: civic and community engagement, proper case management, surveillance and contact tracing, good laboratory service, safe burials, and social awareness and mobilization.

The Reservoir Host for Ebola Virus

Despite having caused dozens of outbreaks in a forty-year span, the Ebola’s reservoir host remains unknown. The fact that the virus does not infect very often has possibly kept its genome stable over the years. It has not had many opportunities to mutate, causing infrequent outbreaks with a low genetic diversity (Quammen 2015). From 1977- 1994, no human death as a result of Ebola was reported, and researchers have concluded that the reservoir host for Ebola virus must be non-human because of high fatalities from human infection. Ebola cannot be circulating in the human population latently; it must reside in a non-human host so that when it spills over into another species it causes deadly disease.

In searching for a reservoir host, researchers have ruled out chimpanzees and gorillas, because they have also died from becoming infected with Ebola virus. When there have been Ebola disease outbreaks in humans, carcasses of chimps and gorillas have been found nearby, and some have tested positive for signs of the virus (Quammen 2015). Coming in contact with these carcasses for food has been one way in which populations initially contract the virus. Based on disease outbreak trends and research studies, it was found that the fruit bat from the Pteropodidae family and the Angolan free-tailed bat are a possible reservoir for Ebola (Quammen 2015; WHO 2014). People who use fruit bats as a food source or who come in contact with them do become infected.

In 1976, two outbreaks of Ebola virus disease occurred parallel to each other, in regions about one thousand kilometers apart in central Africa. One outbreak appeared in Nzara, Sudan, and the second in Yambuku, Democratic Republic of Congo. The recent epidemic is the greatest and most complex Ebola outbreak since its discovery, leading to more cases and deaths than all other outbreaks combined. It has spread to other countries, starting in Guinea and spreading across land borders to Sierra Leone and Liberia (Figure 1). It has also spread by air to Nigeria, and by land to Senegal. Guinea, Sierra Leone, and Liberia are the countries that have been most severely affected. Even as the number of cases for the 2015 outbreak decreases, a resurgence of cases has occurred due to survivors continuing to pass on the disease after recovery (Farge and Giahyue 2015). Weak health systems, lack of human and infrastructure resources, and having recently emerged from periods of conflict have further contributed to the devastating impact that the Ebola virus disease has inflicted.

How is Ebola Virus Spread Amongst Humans?

The time it takes the virus to kill an infected individual depends on how it enters the body and how much virus the person has been infected with. Any form of contact with bodily fluids, either directly or through syringes, is the likely mode of the spread of the virus. Once inside the host, Ebola virus primarily targets dendritic cells and macrophages to replicate its RNA. The virus forces these cells to produce and secrete free-floating glycoproteins that resemble its own surface glycoproteins. These secreted glycoproteins become the target of the immune system cells and effectively cause a distraction in which the virus can continue to infect other host cells and proliferate. Macrophages and dendritic cells circulate in the body and phagocytize foreign organisms or damaged cells. When the virus infects these cells, it is able to travel to various points of the body and wreak havoc when it replicates. Researchers believe that the severity of the virus infections in large human populations   is due to these mechanisms. For individuals who are immunocompromised or malnourished, the virus can have an even greater advantage in taking over the already weakened immune system and thus have a greater chance of proliferating.

In short, all the evidence indicates that “Ebola isn’t nearly as contagious as measles and many other viruses.

… and a person infected with Ebola may not show any symptoms for 21 days” (Adams 2014 9–10). However, as the recent outbreak has shown, Ebola is not a subtle bug. It “…kills many of its human victims in a matter of days, pushing others to the brink of death, before vanishing” (Quammen 2015, 40). Bray et al. (2015) have summarized the symptoms and signs of disease as follows:

Patients with Ebola virus disease typically present with a nonspecific febrile syndrome that may include headache, muscle aches, and fatigue. Vomiting and diarrhea frequently develop during the first few days of illness, and may lead to significant volume losses. A maculopapular rash is sometimes observed. Despite the traditional name of “Ebola hemorrhagic fever,” major bleeding is not found in the majority of patients, and severe hemorrhage tends to be observed only in the late stages of disease. Some patients develop progressive hypotension and shock with multiorgan failure, which typically results in death during the second week of illness. By comparison, patients who survive infection commonly show signs of clinical improvement during the second week of illness. (Bray et al. 2015, 2)

Treatment of Ebola is primarily aimed at mitigating the effects of the symptoms that arise as the disease progresses (King 2015). Necessary precautions are followed by the caregivers and healthcare staff to eliminate unnecessary exposure of the patient and prevent harm to self. As resources permit, the overall state of the patient in vital signs, fluid levels, and electrolyte levels is carefully monitored and remediated appropriately, especially in the earliest stages of infection. Some medication may be administered if the patient is strong enough, such as antipyretic agents, analgesics, antiemetic, anti-motility, and anti-epileptic medication. At the height of the onset of the more severe symptoms, more invasive interventions must be given, such as intubation (for respiratory failure), dialysis/renal replacement (for kidney failure), and antimicrobial therapy (for co-infecting diseases, such as malaria) (Bray et al. 2015).

Ebola virus survivors are not safe either; as Kupferschmidt (2015) has recently reported, there is a growing and alarming trend in Ebola survivors displaying health problems after they have fought the disease. Not only do these individuals suffer from emotional and psychological problems, they also suffer from post-Ebola syndrome, such as headaches and memory and vision problems. It is believed that the symptoms may arise from cells and organs that were damaged by the virus before it was brought under control (Kupferschmidt 2015). The side effects could be caused by the immune system trying to fight the virus, or the immune system could have turned against its own tissues with host molecules similar to Ebola.

To learn more about the clinical manifestations and diagnosis of Ebola virus disease, instructors can direct students to the work of Bray and Chertow (2015), which provides an update about this matter.

The Role of Clinical Trials in Determining the Effectiveness of a Drug

In Guinea, a clinical trial is being conducted for an experimental Ebola vaccine that is yielding promising results. More than 7,651 individuals were involved in the study, and over 3,400 received the vaccine. Individuals who were vaccinated were those who came in contact with Ebola infected patients, as well as the contacts of those contacts. Some people were vaccinated immediately and others were vaccinated after 21 days. The individuals who were immediately vaccinated were found to not contract the disease, whereas some who were vaccinated twenty-one days after contact with Ebola infected patients developed the disease. This might have occurred due to the nature of the virus incubation period, which is twenty-one days. Although significant, these results are preliminary; further research and monitoring must be performed to test the efficacy of the vaccines over time. The side effects to the patients were reported to be minimal (Fink 2015; Seppa 2015).

The Public Health Agency of Canada created the vaccine by combining a piece of the virus’s covering and an animal virus to set off an immune response against Ebola (Fink 2015). The results of this and other clinical studies are expected to be analyzed and scrutinized so that the vaccine can be approved by the Food and Drug administration (FDA). If approved, this vaccine would completely change an Ebola crisis by preventing the development of new Ebola cases in the vaccine’s recipients. A summary of current experimental Ebola treatments has been compiled in Table 4 below.

Clinical trials are a critical part of doing science involving people. It is these trials that decisively determine whether a particular treatment is effective by testing the drug in a “treatment” group and in a “placebo control” group. If the tested drug is not effective, we will be able to show empirical evidence that it has failed and reject it with statistical confidence. After all, science, through the scientific method approach, is an efficient and objective pathway by which we can discover and better understand the world around us” (Cherif 1998; Cherif and Roze 2013; Phelan 2013). As defined by the National Cancer Institute (NCI) (2014 a and 2014b) at the National Institutes of Health (NIH), clinical trials are research studies that involve people, test new ways to prevent, detect, diagnose, or treat diseases, and thus contribute to our understanding of the world in which we live. It is an effective approach when research studies involve people because it is empirical, testable, repeatable, and self-correcting. In short, the clinical trial is “a device for obtaining objective evaluations of the effectiveness of treatments” (Fehan 1979, 32). Because of this, policies and regulations at the national and international level have been developed to protect the rights, safety, and well-being of those who take part in clinical trials. They also ensure that trials are conducted according to strict scientific and ethical principles. Through informed consent people learn about the clinical trial so they can decide whether they wish to participate (NCL 2014a, 1).

Furthermore, people who take part in any type   of clinical trial have an opportunity to contribute to scientists’ knowledge about a given targeted disease and to help in the development of improved treatments for that particular disease (e.g., cancer, HIV) (NCI 2014a,2). When it comes to Ebola virus, the stakes are very high, since both the rate of infection and the rate of death from infection are extremely high. Adding to this complex equation of urgency is that fact that to date there is no licensed effective drug on the market for people to use with Ebola epidemic.

The WHO Director-General declared this outbreak a public health emergency of international concern, but the UN’s Anthony Banbury predicted that the Ebola outbreak would end in 2015 (NBC News 2015b). The World Health Organization (WHO) declared the end of the Ebola outbreak in Liberia in September 2015, Sierra Leone in November 2015, and in Guinea in December 2015, two years after the epidemic began there. However, this good news has been interrupted by the thought among a number of experts that the problem might still be around. This might be why Alexandre Delamou, Chief of Research at the National Center for Training and Research, Maferinyah, stated:

Guinea Ebola’s lasting legacy may be in maternal and child health: Public health officials worry that deaths during childbirth and from preventable childhood diseases like measles could escalate into the tens of thousands. Delamou talks about why the collateral damage triggered by the epidemic could turn out to be even more lethal than the outbreak itself. (Marsa 2016, 16)

Because of this, the recent Ebola epidemic is an ideal vehicle to introduce students to the need for civic engagement, global awareness, and social mobilization at all levels of involvement. It is also a good topic for extending student learning beyond the classroom and into the community and for helping students develop a sense of caring for others and a desire to meet actual community needs (Belbas et al. 2003). Public awareness, education, civic and social engagement, and global mobilization are urgently needed at all levels as part of both the treatment and prevention of the Ebola epidemic.

Part II – Learning Activity

To Use or Not To Use Clinically Untested Drug for Ebola Treatment

One objective of this activity is to help students understand the Ebola virus’s effect on societies and communities. The second objective is to actively engage students in a library investigation, conducting literature research, and in collaborating in group work, not only to achieve understanding, but also to retain new information and apply what has been learned to different situations. The aim is to provide an opportunity for students to become deep learners by engaging in active learning and civic engagement (Cherif et al. 2011). As Houghton (2004) has argued, deep learning promotes understanding and application for life and “involves the critical analysis of new ideas, linking them to already known concepts and principles, and leads to understanding and long-term retention of concepts so that they can be used for problem solving in unfamiliar contexts” (Houghton 2004, 5).

In this role-play learning activity, the class is divided into nine groups of three or four students each. The members of each group will engage in focused research, meet several times to formulate their chosen perspective, and revise strategy and plan on how they are going to introduce their own perspective, supported with convincing informative arguments. The task of each group’s members is to come up with an agreed-upon perspective that reflects their collective informed opinions about their specific issue and to defend it against other groups’ perspectives.

Scientifically, any drug intended to be used with people is tested with two separate groups of patients; one group is given the actual drug, and the other group is given a placebo. The members of both groups do not know whether or not they are taking a placebo drug.

A placebo is “an inactive substance used in controlled experiments to test the effectiveness of another substance; the ‘treatment group’ receives substance being tested, the ‘control group’ receives the placebo”(Norris and Warner 2009, vlg-2).

The Scenario – The Problem

Clinical trials are research studies designed to assess the safety or efficacy of a medical product including medicines, procedures, treatment and/or intervention and to determine which one may benefit the targeted patients the most. To successfully ensure obtaining objective outcomes, these types of research studies often involve expert teams from the academic, governmental, and pharmaceutical sectors. As a result of this, clinical and medical trials are often funded by both government agencies such as NIH and industries. Furthermore, the 1993 Revitalization Act requires that “all federally funded clinical research prioritize the inclusion of women and minorities and that research participant characteristics be disclosed in research documentation” (Basken 2015; Ehrhardt et al. 2015).

No one can statistically guarantee the drugs will work on humans or predict their effect on humans without evidence from clinical trials. Two opposing views arose from this standard in light of the outbreak. On the one hand, the government and the medical communities were asked to follow the agreed-upon experimental procedures of using “treatment groups” and “control groups” to test the drugs on human subjects regardless of the epidemic’s severity and how many people were in real need of any available drug to try. Those who argued this were well aware that the “treatment group” receives the substance being tested, while the“control group” receives the placebo. On the other hand, there are many dissenting opinions arguing that in an epidemic such as this, we cannot afford to wait for a given drug to be tested on humans, since it will take months or potentially years to determine its efficacy and long-term effects. In addition, using the placebo with a group of people infected with the Ebola virus might result in most of them missing an opportunity to get the potential drug and recover.

The question then becomes: should or should we not authorize the administration of the three drugs that are not yet tested through clinical trials on humans? In other words, because of the severity of the epidemic, should we skip the clinical trials and the use of the“treatment group” and the “control group” to first test the effectiveness of the drugs before using them on all Ebola patients? This is a learning activity in which students will engage in active learning to deal with this ethical dilemma, which is faced not only by the countries that are affected by the current Ebola outbreak, but by countries worldwide where similar epidemics are possible.

In this learning activity:

  1. Students are asked to conduct research regarding the following:
    1. Learn about the Ebola viruses and how they are different from other
    2. Learn how Ebola virus infects people, the myths and facts about an Ebola outbreak, and the modes of transmission between
    3. The distribution of the Ebola epidemic worldwide, past and
    4. The symptoms and the signs of the Ebola infection and how the people infected with virus can be treated.
    5. The types of drugs and treatment therapies that are available for Ebola patients to
    6. How effective the treatment of people infected with Ebola virus is in various
    7. The effectiveness of the available treatment therapy for Ebola infection and Ebola
    8. Clinical trial experimental procedures and their critical role in determining the safety and effectiveness of a given drug for a given illness.
  1. Based on their research findings, the members of each community (group) formulate their informed and supported perspective on the use of untested drugs for the treatment of patients who are already infected with Ebola virus.
  2. When the members of each group have developed their own informed perspective, they engage in a debate with the members of the other communities (groups).
The Communities

The class is divided into the following nine groups (communities):

  • The scientific community
  • The legal community
  • The pharmaceutical community
  • The civic engagement and activist community
  • The local community
  • The government and political community
  • The medical community
  • The board debate committee
  • The media group

Each community consists of three or four students. The members of each community work together for three weeks to conduct research using the questions that have been presented to all the communities as a starting point. In the fourth week, the members of each community meet together to finalize the outcome of their research and research paper, as well as their own strategy for how they will present their adopted informed perspective that reflects their collective thoughts about the issue at hand. The members of each group will then argue this perspective, in a face-to-face debate with the other communities. The members of each community will write and submit to the instructor a three- to four- page paper on their research, in which they will explain where they stand and why, on the use of drugs that have not yet been tested in clinical trials in general and in the treatment of Ebola in particular.

The instructor of the class reads all the papers, provides feedback, and raises challenging questions, if needed. Then the instructor gives the students one week to work on their paper again, using his/her feedback, and informs them about the day of the debate. The instructor tells the students in each community to prepare:

  1. A one- or two-minute written statement that will be read at the beginning of the debate.
  2. A one-minute closing written statement that will be read at the closing of the debate, to support their own perspective.
  3. A few key points that represent the core of their main argument.
  4. Any illustrations, diagrams, or figures that might be useful in helping them to convey their own point of view.
Pedagogical Strategies

The activity can be assigned as a group research project, individual term paper, or as a class presentation. Students may be asked to communicate with scholars in related fields, such as pharmacists, virologists, politicians, lawyers, judges, psychologists, sociologists, medical doctors, scientists, and community advocates, and the activity can be conducted in courses teaching such subjects.

Conducting the Learning Activity

Before the Activity

Instructors and teachers might want to use the following questions to help students start their search.

  1. Research three different viruses including Ebola and then write one informative page distinguishing between the three of Submit your outcomes to your instructor and prepare yourself to talk about it in the class.
  2. In scientific research that focuses on drug discovery, use, and effectiveness, such as in cancer, influenza, malaria, Ebola, , there are clinical trials that differ according to their primary purpose. Conduct research to find out if there are also types of clinical trials in Ebola treatment research that differ based on their primary purpose. Use the table below to report your findings.
  3. Distinguish between airborne transmission and non- airborne transmission of the virus.
  4. Provide three examples of airborne pathogens and foodborne pathogens.
  5. Explain which of the following terms best define a virus: pathogenic, microorganism, infectious agent, all of these, none of these.
  6. Search the meaning of each term in Table 5, and then write one page distinguishing between Placebo, Experimental group, Control group, Placebo effect, Blind experimental design, Double-blind experimental design, Critical Based on your research, can you think of two more terms that are related and important to include into the list? In your writing, keep in mind that you are writing to someone who doesn’t have your knowledge and is from a non-science field.
  7. It has been stated that it is more challenging to create a new drug or vaccine for the treatment of a viral infection than for a bacterial. Conduct some library research to investigate the validity of this claim.

Procedures

I  – Before the Enacting Procedures 

  1. Divide the class into nine. Each group consists of a leader plus a few members based on the nature of the community and the needed number for adequate representation.
  2. Present to the students the scenario that the drugs to treat Ebola have not been tested on humans in any rigorous experiments to determine their efficacy and safety—no one can guarantee they will work on humans—as well as what might happen as a result of taking these untested and unapproved This dilemma naturally results in two camps arguing the case for or against the use of these clinically untested drugs.
  3. Inform the students that as active members of their respective communities, they are to present their stance on the use of the drug candidates for They should identify the significance of making theright decision and understand how their decision is the best for their community. They should also predict how their respective communities will react to their final choice and decision.
  4. Give the groups two to three weeks to prepare for their class presentation. In addition to working outside class time, students should have ten to fifteen minutes of class time each week for the members of each group to join together and discuss their work and preparation. This will ensure continuous progress on the project.

  5. Ask the members of each group to meet and divide the roles among themselves by selecting a leader for each category, as well as which areas within that category they would like to represent. In addition, the members of a given group must make their own choice about the type of decision they would like to take, support, and advocate. This type of involvement is very critical in ensuring high level of student involvement in the learning activity.

    1. The groups take turns presenting to the whole class the significance of their decision as well as the prediction For the presentation, each group must:
      1. Have a well-researched presentation and strategy of how to present their respective community’s views and reaction to the decision they would like to
      2. Explain their respective community’s views and reaction to the decision they would like to
      3. Explain how the public might react to their respective community’s views and reaction to the decision they would like to
      4. Prepare a well-researched student hand-out as well as an illustrated
      5. Integrate the use of technology such as PowerPoint, animations, interactive activities, etc. into the presentation. Students should present their plan and strategy, show how it will work, and convince everyone that their decisions support their community’s beliefs and understanding.

       

      II – During the Presentation

  1. The groups take turns presenting to the whole class the significance of their decision as the prediction of how their respective communities would react to it, including why this is a good decision for both the infected and the community.
  2. The leader of each group introduces the members of his or her team, and provides a brief Then the leader of the group can call on the members of his or her group to talk about the significance their decision as well as predict how their respective communities would react to their decision.
  3. The members of the other groups can ask up to three questions after a given group finishes their presentation. The members of each group must also take note of all the questions that were asked by all the groups.
  4. When all the groups finish their presentations, the media group reports on the events and provides a list of questions that the members of the communities failed to raise, answer, or avoided discussing.

III  – After the presentation

  1. Following the class meeting, the members of each group (community) bring answers to the questions that are raised and presented to them by the media group.
  2. Each group is given three to five minutes to address the class one more time. In this short final remark, the groups must have a written statement that can be read to support their views and The written statement doesn’t have to be shared with the other groups beforehand. This is a very important stage in the activity and is related to the “Creative Domain” of McCormack and Yager’s (1989) taxonomy for science education, as we will see in the assessment section and in Table 6 below.
  3. After all the groups present their final remarks, the groups are asked to evaluate, in writing, the performance of each group.
Homework Learning Activity

In this learning activity, students are provided a copy of Table 1 and given one week to conduct library research to answer the following questions:

  1. Differentiate between viruses, viroids, prions, and bacteria.
  2. Why we often include viruses, viroids, prions with microbes, but we don’t qualify them as“living” entities.
  3. What type of virus would you choose to work with or on? Describe its structure and explain why you selected this particular
  4. If you have the means, the know-how, and the will, what would you:
    1. Add to the existing structure of the virus and why?
    2. Take out of the existing structure of the virus and why?
    3. Modify in the existing structure of the virus and why?
  5. What is/are the reason(s) why some viral infections, such as AIDS virus, are incurable?
  6. Conduct Internet research to investigate the claim that the Junck DNA in our chromosomes may have come from ancient viruses that managed to insert their hereditary blueprint into our ancestors’ DNA (Shukman, 2012).
  7. What right do we have to go and tell people what type of drug or treatment they must take? What if they choose not to follow our advice when there is a potential community risk involved?
  8. What have you learned from this learning activity?

Assessments

McCormack and Yager’s (1989) taxonomy for science education is both formative (conducted during instruction) and summative ( conducted at the end   to measure what has been learned). It provides a good framework for assessing students’ achievement, performance, and understanding, as well as the effectiveness of the activity. Table 7 below summarizes McCormack and Yager’s (1989) taxonomy for science education. We have found this to be very effective in enabling both teacher and student to explore how and why each group reached their decision, and whether this whole situation could have been approached in other ways ( Joyce and Weil, 1986). Furthermore, Tables 8, 9, and 10 in the appendix section have been used successfully as tools to record information and to monitor the level of cognitive involvement of the members of a given group during role-play learning activities. For example, using Table 7, instructors can record the type of questions being asked by the members of a given group as well as the relevancy of the questions to the subject matter and to the point being addressed. In addition, using table 8, instructors can record the number of questions being addressed to the other groups by the members of a given group. Instructors can use Table 9 to record the type of questions or conditional statements and their value for assessment purposes (Cherif et al. 2009).

Pre- and Post-test Homework Assignments

To reinforce the learning objectives of the activity and to allow for compelling attitudinal change, ask the students to answer the following questions (adapted from Cherif et al. 2015), either individually or in groups.

I.    Pre-test Homework Assignment

  1. What will you do to make sure that the perspective and the reaction of your chosen community would be the one favored by each student in your class?
  2. What will you do to make sure that you are selecting the right categories of representatives within your chosen community?
  3. If you decide to adopt a real and well-known person from your community, what will you do to make sure that you are selecting the right category of representatives within your chosen community?
  4. What do you think you will learn from the activity at both the academic and personal levels?

II.    A Post-test Homework Assignment

  1. What have you learned from the activity at both the academic and personal level?
  2. If you had to do this all over again, what would you change or do differently and why?
  3. Knowing what you already know, how would you argue against the perspective and the predicted reaction of your own community?
  4. If you have selected an actual well-known person from your chosen community, how did this help you to convey the perspective of your community?
  5. It has been claimed that finding the right drug to treat illnesses that are caused by viruses presents a more difficult problem than treating illnesses caused by bacteria, because of the potential and the rate of damage to the Based on your research, explain why and how. Research what scientists have been doing to overcome that type of obstacle and challenge when searching for the right drug to treat illness caused by viruses.

Final Remark

As teachers and mentors we need to keep in mind that learning activities and teaching approaches should always aim to capture the students’ interest and spark motivation for learning and knowledge creation among students. To achieve this, students should be given the opportunity to be involved in the planning, implementation, and assessment of a given learning activity. To make the teaching approach of the given learning activity more productive, teachers should lead students toward greater levels of involvement in the process by including them in planning the five factors that make up a typical role- playing situation: 1) the problem to be solved; 2) the characters to be played; 3) the roles to be followed; 4) essential information to be gathered and; 5) procedures for the play to be adapted (Cherif and Somervill 1994 and 1995). In this activity, the problem to be solved and the characters to be played are given to the students. However, the roles to be followed, the essential information to be gathered, and the procedures for the play to be adapted as part of the learning activity are the students’ responsibility.

About the Authors

Dr. Abour H. Cherif is a senior past president (2008–2009) of American Association of University Administrators (AAUA). He is also the former national associate dean of curriculum for math and science, and clinical laboratory sciences at DeVry University Home Office, Downers Grove, IL. He holds a B.S. from Tripoli University, an MS.T. from Portland State University, and a Ph.D. From Simon Fraser University, Canada. Dr. Cherif is also an STEM educational consultant for American Community Schools of Athens. Dr. Cherif ‘s professional work includes curriculum design, development and reform, instructional and assessment design, evaluation techniques, faculty, and academic leadership. He has published more than fifteen science lab kits, a number of student laboratory manuals, co¬authored and coedited a number of science textbooks, and published many articles in professional journals and newspapers, including Science Education and Civic Engagement Journal, Journal of College Science Teaching, The American Biology Teacher, The Science Teacher, Journal of Higher Education Management, to name a few. He has received a number of teaching, curriculum development, instructional strategies, and leadership awards. Dr. Cherif serves on the executive and or advisory boards of a number of organizations, including the International Institute of Human Factor Development (IIHFD) and the American Association of University Administration (AAUA). Dr. Cherif is also one of the eight members of the global Morfosis paradigm (gMp) that promotes strategic approaches, innovative methodologies, and a leadership philosophy that guides educational institutions in its adoption and implementation (www.g.morfosis.gr).

Jasper Marc Bondoc will graduate from the Honors College at the University of Illinois at Chicago in spring 2017 majoring in Biology and plans to enter medical school upon completion. He has remained involved in research in Dr. Movahedzadeh’s group at the Institute for Tuberculosis Research at UIC since 2014 and is one of the recipients of SENCER implementation award in 2015.

Ryan Patwell earned his BS in Biological Sciences from the University of Illinois at Chicago in 2013. He is currently a PhD student in Graduate Program in Neuroscience at UIC. Ryan has been involved with helping to develop and measure the outcomes of Project Based Learning courses. He has also designed presentations for non-science majors that can provide a basic understanding of developing sciences and promote civic engagement by making clear the public’s options for having their say in the political aspect of scientific research.

Dr. Matthew Bruder is a Professor at DeVry University, Addison Illinois campus. He is the current co-chair of DeVry’s National Anatomy and Physiology Curriculum Committee. He also serves on DeVry’s National Nutrition Curriculum Committee. He is a Subject Matter Expert in the areas of Anatomy and Physiology. He is a Subject Matter Expert in the areas of Anatomy and Physiology. He has taught at many other colleges and universities all over the greater Chicagoland area. In 2016 Dr. Bruder was a Pearson Cite award nominee for his work in online Anatomy & Physiology Education. Dr. Bruder holds a Doctor of Medicine degree from St. Mat- thew’s University. He has completed masters’ level work in Health Systems Administration at Central Michigan University and St. Joseph’s College of Maine. He holds a bachelor’s degree in Biological Sciences from Michigan Technological University.

Farah Movahedzadeh, Ph.D., is an associate professor and currently the co-Chair of the Department of Biological Sciences at Harold Washington College in Chicago, Illinois. She received a doctorate degree in Clinical Lab Sciences from Medical Sciences University of Iran, and a Ph.D. in Molecular Biology and Microbiology from the University College of London (UCL) and the National Institute for Medical Research (NIMR). She was elected as a SENCER Leadership Fellow in 2012. Her skills and areas of expertise include molecular biology, microbiology, clinical lab sciences, hybrid/blended teaching, and project-based learning. She also actively pursues her research on essential genes as drug targets for tuberculosis at the College of Pharmacy in the University of Illinois at Chicago. She has published research articles in both basic science and in pedagogy and scholarship of teaching.

References

Adams, J. 2014. “Battling Ebola.” Science World 71 (6): 6–11. Arbutus Biopharma. 2015. “ Tekmira Provides Update on TKM-Ebola-Guinea. (2015, June 19).” http://investor.arbutusbio.com/releasedetail.cfm?ReleaseID=918694 (accessed January 11, 2016).

Basken, P. 2015. “2 Critiques of Federally Funded Medical Research: Not Enough Diversity, Not Enough Trials.” Chronicle of Higher Education, December 15, 2015. http://chronicle.com/article/2- Critiques-of-Federally/234625?cid=at&utm_source=at&utm_medium=en&elq=642784e310fa4f4e94539748f0633c54&elqCa mpaignId=2078&elqaid=7239&elqat=1&elqTrackId=3b2fb939f 4714f48a0c650f8afe8b28b (accessed January 13, 2016).

Begley, S. 2015. “ Tekmira Ebola Drug Succeeds in Small Monkey Study.” Reuters, April 22, 2015.

Belbas, B., K. Gorak, and R. Schuman. 2003. “Commonly Used Defi- nitions of Service-Learning: A Discussion Piece.” Scotts Valley, CA: National Service Learning Clearinghouse.

Branswell, H. 2015. “Ebola War.” Scientific American 312 (3): 48–55. Bray, M., and D. Chertow. 2015. “Clinical Manifestations and Diagnosis of Ebola Virus Disease.” UpToDate, Inc. by Wolters Kluwer. http://www.uptodate.com/contents/clinical-manifestations- and-diagnosis-of-ebola-virus-disease?source=see_link (accessed January 13, 2016).

Bray, M., D. Chertow, M. Hirsch, and J. Mitty. 2015. “Treatment and Prevention of Ebola Virus Disease.” UpToDate, Inc. by Wolters Kluwer. http://www.uptodate.com/contents/treatment-and- prevention-of-ebola-virus-disease (accessed January 13, 2016).

Centers for Disease Control and Prevention (CDC). 2015. “2014 Ebola Outbreak in West Africa.” http://www.cdc.gov/vhf/ebola/ outbreaks/2014-west-africa/case-counts.html (accessed January 13, 2016).

Cherif, A. 1998. “Science, Scientists, and Society: Assuring Integrity in Scientific Endeavors through Human Factor Development.” Review of Human Factor Studies 4 (1): 1–31.

Cherif, A., G. Adams, and D. Jeremy. 2015. “What If Fossils Are Discovered on Planet Mars? A Learning Activity for Promoting Critical Thinking and STEM Education.” Pinnacle Educational Research & Development 3 (4): 625–36. http://www.pjpub.org/perd/perd_189.pdf (accessed January 13, 2016).

Cherif, A., and M. Roze. 2013. “The Missing Components in Teach- ing Science.” The American Biology Teacher 75 (3): 153–54.

Cherif, A., F. Movahedzadeh, L. Michel, H. Aron, and D. Jedlicka. (2011). “Environmental Release of Genetically Engineered Mosqui- toes.” Science Education & Civic Engagement: An International Journal 3 (1): 15–25.

Cherif, A., L. Michel, F. Movahedzadeh, R. Aron, and G. Adams. 2009. “Defending the Lowly Prokaryotes: New Challenges for BIOGaia Learning Activity.” The American Biology Teacher 71 (6): 346–53.

Cherif, A.H., and C. Somervill. 1995. “How to Maximize the Learn- ing Productivity of Role-playing in Classroom Teaching.” The American Biology Teacher 57 (1): 28–32.

Cherif, A.H., and C. Somervill. 1994. “Student Assessment in Role- playing Activities.” Forward To Excellence In Teaching and Learning 2 (1): 13.

Chimerix. 2015. “Chimerix Focusing Efforts on CMV and Adeno- virus Pivotal Trials.” http://ir.chimerix.com/releasedetail. cfm?releaseid=893927 (accessed January 11, 2016).

Cooney, E. 2015. “Paper Test for Ebola.” Harvard Medical School, February 3, 2015. https://hms.harvard.edu/news/paper-test-ebola (accessed January 13, 2016).

Ehrhardt, S., L. Appel, and C. Meinert. 2015. “Trends in National Institutes of Health Funding for Clinical Trials Registered in ClinicalTrials.gov.” JAMA 314 (23): 2566–67. doi:10.1001/ jama.2015.12206. http://jama.jamanetwork.com/article. aspx?articleid=2475454 (accessed January 13, 2016).

“The End of Ebola In Freetown 2015.” https://video.search.yahoo. com/yhs/search;_ylt=A0LEVipWXeZVCroANTAnnIlQ;_ ylu=X3oDMTEzOW81ZTFkBGNvbG8DYmYxBHBvcwMy BHZ0aWQDRkZSQUMwXzEEc2VjA3Nj?p=The+End+of+Ebola+In+Freetown+2015&fr=yhs-mozilla-003&hspart=mo zilla&hsimp=yhs-003 (accessed January 13, 2016).

Farge, E., and J.H. Giahyue. 2015. “Female Survivor May Be Cause of Ebola Flare-up in Liberia.” Medscape, WebMD LLC, December 18, 2015.

Fehan, E.A. 1979. “Clinical Trials in Cancer Research.” Environmen- tal Health Prospect 32: 31–48.

Fink, S. 2015. “Ebola Vaccine Highly Effective during Clinical Trial in Guinea.” New York Times, July 31, 2015. https://www.bos- tonglobe.com/news/world/2015/07/31/ebola-vaccine-highly- effective-guinea-testing-recovery-found-people-treated-quickly/ ZUPWFt0Ff76d5Nk8GcT7xK/story.html (accessed January 13, 2016).

Fox News. 2015. “Sierra Leone President Predicts Zero Ebola Cases by March End.” Associated Press, January 14, 2015. http://www.foxnews.com/health/2015/01/14/sierra-leone-president- predicts-zero-ebola-cases-by-march-end/ (accessed January 13, 2016).

Fugifilm. 2014. “Efficacy of Avigan® Tablet 200mg as a Treatment for Ebola Virus Disease (EVD) Suggested in Clinical Trial (Interim Analysis).” http://www.fujifilm.com/news/n150224. html (accessed January 11, 2016).

Garrett, L., and J. Penn. 2009. Get Ready for Microbiology. San Francisco: Pearson Education.

Griffith, J., and R. Rohde. 2014. “Ebolavirus: Implications for the Clinical Laboratory.” Clinical Laboratory Science Journal. http://www.ascls.org/images/publications/journals/Ebola_ virus_manuscript.pdf (accessed January 13, 2016).

Hart, D., C. Hadad, L. Craine, and H. Hart. 2012. Organic Chemistry: A Short Course. 13th ed. Boston: Cengage Learning.

Healy, M. 2015. “Promising Ebola Drug Protects Rhesus Monkeys.” Los Angles Times, April 22, 2015. http://www.latimes.com/science/sciencenow/la-sci-sn-ebola-drug-protects-20150422-story. html (accessed January 13, 2016).

Houghton, W. 2004. “Deep and Surface Approaches to Learning.” In Engineering Subject Centre Guide: Learning and Teaching Theory for Engineering Academics, W. Houghton, ed. Lough- borough, U.K.: HEA Engineering Subject Centre.

Joyce, B., and M. Weil. 1986. Models of Teaching. Englewood Cliffs: Prentice-Hall, Inc.

King, J., H. Rafeek, and P.H. Chandrasekar. 2015. “Ebola Virus Infection Treatment & Management.” Medscape, WebMD LLC., February 17, 2015. http://emedicine.medscape.com/article/216288-treatment#showall (accessed January 13, 2016).

Kupferschmidt, K. 2015. “Surviving Ebola Survival.” Science 348 (6242): 1406–7.

Kwan, T., and J. Texley. 2015. “Educating about Ebola and Other Viruses.” NAST Report 26 (5): 10–11.

Lydersen, K. 2015. The Ebola Explosion. Discover, January/February 2015: 7–12.

Mapp Biopharmaceutical, Inc. n.d. “ ZMapp™” http://mappbio. com/z-mapp/ (accessed January 11, 2016).

Marsa, L. 2016. “Ebola Aftermath.” Discover, January/February 2016: 16–17.

Mazumdar, T. 2014. “Ebola Outbreak: MSF to Start West Africa Clinical Trials.” BBC News, November 13, 2014. http://www.bbc.com/news/world-africa-30033400 (accessed January 13, 2016).

McCormack, A.J., and R.E. Yager. 1989. “ Toward a Taxonomy for Science Education.” B.C. Catalyst 33 (1): 16-17.

Minkler, M., and F. Marais. 2015. “Letter: Fighting Ebola.” Scientific American 313 ( 1): 6.

Morin, M. 2015. “Side Effects Temporarily Halted Ebola Vaccine Safety Trial.” Los Angles Times, April 22, 2015. http://www. latimes.com/science/sciencenow/la-sci-sn-vsv-ebola-vaccine- 20150407-story.html (accessed January 13, 2016).

National Cancer Institute (NCI). 2014a. “Cancer Clinical Trials at the NIH Clinical Center.” National Cancer Institute at the National Institutes of Health. http://www.cancer.gov/about-nci/organization/clinical-center-fact-sheet (accessed January 13, 2016).

———. 2014b. “Clinical Trials Information for Patients and Care- givers.” National Cancer Institute at the National Institutes of Health. http://www.cancer.gov/about-cancer/treatment/ clinical-trials (accessed January 13, 2016).

NBC News. 2015a. “Liberians Took to the Streets to Cel- ebrate the End of the Ebola Epidemic.” NBC News, May 12, 2015. www.nbcnews.com/watch/nbc-news/ end-of-ebola-celebrated-in-liberia-443681859805

NBC News. 2015b. “Ebola Outbreak Will End in 2015—UN’s Anthony Banbury.” NBC News, January 2, 2015. www.bbc.com/ news/world-africa-30655303

Norris, M., and J. Warner. 2009. Student Success Guide to Accompany What Is Life? A Guide to Biology. New York: W.H. Freeman and Company.

Phelan, J. 2013. What Is Life? A Guide To Biology. 2nd ed. New York: W.H. Freeman and Company.

Public Health Agency of Canada. 2015. “ Fact Sheet – VSV-EBOV- Canada’s Experimental vaccine for Ebola.” http://www.phac- aspc.gc.ca/id-mi/vsv-ebov-fs-eng.php (accessed January 11, 2016).

Quammen, D. 2015. “Stalking a Killer: Ebola Doesn’t Disappear: It Just Goes Into Hiding.” National Geographic 228 (1): 30–59.

Rudin, N. 1997. Dictionary of Modern Biology. Hauppauge, NY: Barron’s Educational, Inc.

Science News. 2014. “Ebola – Airborne or Not?” Science News 186 (9): 30.

Seppa, N. 2015. “Ebola Vaccine Effective in Guinea Trial.” Science News 188 (5): 6.

Shukman, D. 2012. “Ancient Virus DNA Thrives in Us.” BBC News, Science & Environment, April 24, 2012. http://www.bbc.com/ news/science-environment-17809503 (accessed January 13, 2016).

Strohl, W., H. Rouse, and B. Fisher. 2001. Lippincott’s Illustrated Reviews of Microbiology. Philadelphia: Lippincott Williams & Wilkins.

Download (PDF, 793KB)

Music: The Link Between Science and the Humanities

Paula Bobrowski,
Auburn University
Ann Knipschild,
Auburn University

Abstract

“Music and Science” is a course designed specifically to foster the integration of STEM and the humanities and to incorporate an undergraduate research project into a general education class. In addition to studying theories presented in readings, class activities include lectures, video presentations, case study discussions, guest speakers, listening experiences, and a significant team-based undergraduate research project. Students learn how concepts in science and music are intertwined while engaging in actual research that demonstrates the physical and emotional effects that music has on the human body. Students are able to make important connections that show how music can be used for different types of therapies and how it can be used to improve one’s quality of life. Preliminary findings based on student feedback and SALG assessment (Student Assessment of Their Learning Gains) indicate that the research project has a significant impact on student learning, interest in science and music, and acquisition of career skills.

Introduction

In response to the need for new courses with innovative teaching strategies, faculty at Auburn University developed a “Music and Science” general education course to promote the integration of STEM and the humanities. This class is intended to develop students’ interest and engagement in music and science in order to enhance their understanding of the connection between the two disciplines throughout history and in today’s world. We used several class activities to actively engage the students during the course, including guided listening exercises, concert experience analysis, and an experiential learning based research project. A primary goal of adding the research project was to provide the students with a deeper understanding of research methodology, physiology, the neuroscience of music, and how the use of music can be designed into settings to improve one’s quality of life. Undergraduate research projects have been found to improve the learning experience in general education courses and may also help students as they prepare for careers in today’s world (Cerrito 2008). The purpose of this article is to summarize the Music and Science course and encourage others to develop programs that nurture and advance the integration of STEM and the humanities.

Music is culturally understood by all people and has been an integral part of society since our origins. According to neuroscientist Daniel Levitin (2006), human beings in all civilizations have personal identities that involve music. There is archeological evidence in Europe of the use of musical instruments created with stone tools dating from at least 40,000 years ago (Higham et al. 2012). Music has also played an important role in the development of our ability to listen and communicate with each other. “Musical components are the fundamentals of communication . . . and rhythm, in particular, is the musical aspect of communication fundamental to the way in which we relate to ourselves and to others” (Aldridge 1989, 743).

The connections between music and science have been studied since the time of Pythagoras, and we can find relationships between music and mathematics, physics, and technology throughout our history. Music has also been used in healthcare as a therapeutic tool in stress and pain management, rehabilitation, and behavior modification. Recent studies in neuroscience show the effects of music on our emotions and physiology: exposure to various genres of music can affect changes in our breathing, heart rate, and the amount of stress hormones that our bodies release (Novotney 2013). The physiological effects of music can be measured and then used as an effective instrument in the healing professions and can contribute to the understanding of the human experience.

“The body of the speaker dances in time with his speech. Further, the body of the listener dances in rhythm with that of the speaker!” (Condon and Ogston 1966, 338)

Development and Context of the Course

After attending a workshop given by SENCER (Science Education for New Civic Engagements and Responsibilities), the authors sought to create a course that would foster the interdisciplinary connections between science and music. Due to the need for new general education courses and the university’s emphasis on undergraduate research, we chose to develop a course that would fit into the existing undergraduate core curriculum. We received a SENCER Post-Institute Implementation Award and Auburn University funding to help with this project.

Auburn University is a land grant university with a student population of over 25,000 students. Students are required to take one three-hour course in the fine arts as part of the university’s core curriculum. MUSI 2750 Music and Science was accepted by the University Curriculum Committee as a Fine Arts core course beginning Fall 2014. The first offering of the course in Fall 2014 included thirty-four students (70.6 percent male, 29.4 percent female), and Spring 2015 included thirty students (76.7 percent male, 23.3 percent female) for a total of 64 students, all taught by the authors. These students were traditional college-age students, the majority of whom were engineering and science majors, predominantly in their freshman and sophomore years. This was the first time that such a high percentage of STEM majors were attracted into a single core music course.

Course Objectives and Expected Outcomes

Course Description: This course explores the relationship between music and science in society from antiquity to the modern day. It is designed for non-music majors who have an interest in music and science. (See table 1 for objectives and expected outcomes.)

Course Design

The first offering of the course was primarily a lecture-based class. The class met once a week for two and a half hours. Each week, a new topic exploring the connection between music and science was discussed. Areas included music and its relationship to math, physics, technology, sociology, neuroscience, biology, and healthcare. In addition to the traditional course format (lectures, readings and discussion, quizzes, and final exam), students were expected to participate in two experiential learning activities: concert attendance/report and a team-based research project/presentation. The concert experience occurred in both semesters, including the initial class offering, while the research project was added the second semester the class was taught.

Concert Experience

Students were expected to attend and report on a live concert. They were given guided-listening exercises during class to help prepare them for this assignment. In their report, they were expected to incorporate terms and concepts learned from the course, discuss the scientific and technological developments in society that affected the music and musicians, describe the listening experience using aesthetic judgment, and give an observation of the creative process in the concert.

Team-Based Undergraduate Research Project

Five teams of five or six students were formed to participate in the research project that measured the physiological effects of two contrasting selections of music on human subjects. Teams were constructed using theories on the creation of high-performance teams (Katzenbach and Smith 2006). Students were given guidelines on team building and how to make teams effective. They were given some class time in which to meet, but were also expected to meet outside of class. (This was factored in the time required for course assignments.) Each team was required to submit a team charter due during the sixth week of class. Guidelines were given for the research project with due dates for various stages of the project. The project report components included a title page, abstract, introduction and research question, description of methods/data collection, presentation of data, results, conclusion, future work that might come out of the project, and bibliography. (See grading rubric below.) The first half of the project was due during the ninth class meeting and feedback from both instructors was given. Data were collected with a BIOPAC system and analyzed using SPSS 22. The final report was due the last day of class, and teams presented their projects to the rest of the class. Team members filled out an evaluation form on the work of each student in their own team and on the overall presentations of the other teams.

Preliminary Findings

To assess the impact of the course on academic gains, the students were given a SALG (Student Assessment of Their Learning Gains) pre-test survey at the start of the course and a post-test survey at the end of the course. Areas assessed by both pre- and post-SALG surveys included (1) student understanding of concepts explored in the class, (2) increase in skills as a result of work in class, (3) class impact on student attitudes, and (4) integration of learning. The responses to the survey were anonymous and did not affect the students’ overall academic grades in the class.

Preliminary results of these surveys, comparing Fall 2014 (no research project) to Spring 2015 (research project added), showed gains in each of the areas listed above. Student comments on teaching evaluations indicated that students felt they improved their individual communication skills and ability to work in teams.

Future Directions

We will continue to offer the course with the undergraduate research project. An IRB application is in progress, as we plan to complete an in-depth analysis of the SALG survey assessments and also use the physiological results of the student projects for a study on how different types of music affect human physiology. We will be working with an honors student and have plans to publish the results and present them at a conference.

We have recently received outreach funding to add a civic engagement component to the course. In Spring 2016, student teams will share their knowledge of music and science with K-12 students. The teams will be given assignments to develop various activities for elementary students based on material learned in the Music and Science course. These activities will engage the elementary students with interactive learning, such as constructing simple musical instruments or listening/reacting to various kinds of music. The teams will document their experiences, get feedback from the elementary school students, and present reports to the rest of the Music and Science class at Auburn. A primary goal of the outreach project is to connect with future generations of students who may chose careers in fields involving STEM and the humanities.

Summary and Conclusion

We have successfully implemented a new general education course that integrates the disciplines of music and science. After initially offering it primarily as a lecture-based course, we added a team-based research component that engages the students in an active learning experience. We have evaluated the course using the SALG assessment tool and are in the process of applying for IRB approval so that we can publish the results of the students’ work.

This course has helped us promote the relationship between science and the humanities with the understanding of the past and connections to today’s world and the future. We appreciate the support of SENCER and Auburn University in this endeavor.

About the Authors

Paula Bobrowski is Associate Dean of Research, Faculty Development, and Graduate Studies at Auburn University. She is a professor in the Health Administration Program and is the past Executive Director of the Women’s Leadership Institute. She teaches a variety of courses including healthcare innovation and technology management, marketing, and finance. Her extensive professional career in healthcare and international business includes working with the World Health Organization and the International Eye Foundation in Saudi Arabia and as a Fulbright scholar in Japan. She holds a BSN from Oregon Health & Science University, an MBA in International Business and Marketing from the University of Oregon, a PhD in Marketing and International Technology Management from Syracuse University, and a Certificate in Leadership from Harvard University. She has been at Auburn University since 2005 and has been PI on several grants from funding agencies such as SENCER, the Department of Education, the Fulbright Association, and the Aspen Institute in Washington, DC. She serves as Past President Elect of the Alabama Fulbright Chapter and has recently been elected to serve as a SENCER Leadership Fellow.

Ann Knipschild is Professor of Music at Auburn University where she teaches oboe, woodwind theory, and a new undergraduate general education course, “Music and Science,” which explores the connections between music and science. She received the Doctor of Musical Arts degree from the State University of New York at Stony Brook and the Master of Music degree from Yale University, studying oboe with Ronald Roseman. She holds baccalaureate degrees in both music and agronomy from the University of Missouri-Columbia. Ann is active as a music performer throughout the country and has been featured on concerts in Puerto Rico, Greece, Italy, Austria, England, Scotland, and the Netherlands. In addition to her performing, she has published baroque performing editions with Musica Rara, Breitkopf & Härtel, and Doblinger. She has participated in conferences of the College Music Society, International Double Reed Society, Imagining America, and the SENCER Summer Institute.

References

Aldridge, D. 1989. “Music, Communication and Medicine: Discussion Paper.” Journal of the Royal Society of Medicine 82: 743–46.

Cerrito, P.B. 2008. “Classroom Research for Undergraduate Mathematics Majors and General Education Students.” CUR Quarterly 29 (1): 52–57.

Condon, W.S., and W.D. Ogston. 1966. “Sound Film Analysis of Normal and Pathological Behavior Patterns.” Journal of Nervous and Mental Disease 143 (4): 338–47.

Higham, T., L. Bassell, R. Jacobi, R. Wood, C.B. Ramsey, and N.J. Conard. 2012. “ Testing Models for the Beginnings of the Aurignacian and the Advent of Figurative Art and Music: The Radiocarbon Chronology of Geißenklösterle.” Journal of Human Evolution 62 (6): 664–76.

Katzenbach, J.R., and D.K. Smith. 2006. The Wisdom of Teams: Creating the High-Performance Organization. New York: HarperBusiness.

Levitin, D.J. 2006. This is Your Brain on Music. New York: Plume/ Penguin.

Novotney, A. 2013. “Music as Medicine.” Monitor on Psychology 44 (10) : 46.

Download (PDF, 544KB)

Why We Should Not ‘Go It Alone’: Strategies for Realizing Interdisciplinarity in SENCER Curricula

Sally A. Wasileski,
UNC Asheville
Karin Peterson,
UNC Asheville
Leah Greden Mathews,
UNC Asheville
Amy Joy Lanou,
UNC Asheville
David Clarke,
UNC Asheville
Ellen Bailey,
UNC Asheville
Jason R. Wingert,
UNC Asheville

Abstract

With support from a SENCER Post-Institute Implementation sub-award grant, seven faculty members from six different disciplines began a collaborative partnership to design joint curricular projects across courses and departments on the theme of Food for Thought. To meet our goals, we developed shared learning outcomes for students in courses in the Food for Thought cluster, using SENCER goals as a guide for our work. In order to address those outcomes, we crafted a variety of projects engaging students from two or more courses. We implemented these projects in our courses and assessed student perceptions of learning and student performance in integrative learning. In this article we detail the challenges and benefits of ongoing interdisciplinary collaboration, as well as how this group of faculty members balanced other demands of academia. We conclude with a discussion of our assessment methodology and findings of improved learning.

Introduction

In most of our academic lives as faculty, many of us are used to, and perhaps even prefer, working alone. We can easily empathize with our students who complain about the hazards and time drain that they experience doing group work in classes. Some of us might go so far as to say we’d rather go it alone than ever have to adjust to planning our teaching with others. After all, when we do it alone, course planning can take place in the wee hours, does not require multiple meetings, and affords us the greatest flexibility and control over what happens in the classroom. In spite of this tendency to be quite content to “go it alone,” our group of seven faculty members has spent the last eight years in a collaborative partnership designing joint curricular projects across courses, departments, and university divisions on the theme of Food for Thought. We work in diverse disciplines— Biology, Chemistry, Economics, Sociology, Spanish, and Health and Wellness— and together we have created numerous projects involving as few as two and as many as five courses that engage students with the science, politics, and human elements of food production, distribution, and consumption. We have not only implemented these multidisciplinary projects in our courses, we have also assessed student perceptions of learning and student performance in integrative learning achieved from this focused, yet multidisciplinary teaching. And while our efforts have taken time and energy, we have evidence, both from our multiple modes of assessment of the effects on students and from the rewards we have experienced teaching in these contexts, that mindfully planned collaboration has important benefits for our work with students.

Our motivation for doing this work occurs in a larger context in which, for more than a decade, universities and colleges across the United States have been newly articulating the value and purpose of undergraduate education. One outcome of this self-interrogation has been a renewed focus on integrative learning and new efforts to work towards assuring that undergraduates leave college with a sense of the complexities of social, scientific, technical, and environmental problems, and with an understanding that problem-solving requires multiple perspectives. In 2004, for example, Carol Geary Schneider, president of the Association of American Colleges and Universities (AAC&U), called for integrative approaches to become more central to the enterprise of education, in order combat the “fragmentation of knowledge” (Schneider 2004). AAC&U has taken on several initiatives related to these concerns, including issues of implementation and assessment (Huber et al. 2007; Ferren et al. 2014/2015). Our work was inspired by our participation in a Summer Institute sponsored by The Science Education for New Civic Engagements and Responsibilities (SENCER), an NSF-funded organization whose focus echoes these concerns about integrative education. Its SENCER Ideals include “robustly connect[ing] science and civic engagement by teaching ‘through’ complex, contested, capacious, current, and unresolved public issues ‘to’ basic science” (SENCER 2015).

In this essay, we share our experiences with collaboration in planning, implementing, and assessing cross-course projects that, when experienced by students especially over several semesters, lead to enhanced integrative, interdisciplinary learning. In this context, we define our teaching efforts as multidisciplinary, because projects are approached from each faculty member’s traditional disciplinary area of expertise. We argue that a viable approach to the goal of promoting citizen science (science broadly accessible to informed citizens) is to draw on the strengths of multiple experts from more than one discipline, rather than retraining ourselves in realms of expertise that are not our own. Yet we also describe and demonstrate that student learning from this approach is integrative and interdisciplinary, as students are better able to synthesize content and make connections between multiple disciplines. If the goal of a “SENCERized” curriculum is to help students learn science and its relevance to and limitations in a range of public issues and in solving complex problems of interest to students, we argue that we enhance these goals by bringing in multiple disciplinary perspectives with real representatives of those lenses. If we forgo “going it alone,” we bring more context and connection to civic issues and provide a model of civic engagement for our students.

Cross-Class Collaboration to Promote Interdisciplinary Learning

In 2006, with the help of a SENCER Post-Institute Implementation sub-award grant used to provide faculty summer stipends for planning, we embarked on a path of collaboration, creating a cluster of courses focused on developing the student as an informed consumer of food by providing a platform for discussion of what we eat, why we eat, where our food comes from and its journey from production to consumption, and how food affects our bodies and health. As faculty from across the university in natural sciences, social sciences, and humanities, we sought to create a set of offerings that would meet a multidisciplinary general education requirement by inviting our students to recognize and appreciate the different ways that our disciplines were concerned with issues of food. We hoped to encourage students to recognize ways in which human bodies and societies are interlinked by numerous processes, many of which can be understood by investigating the dynamics of food in chemical, biological, cultural, and social systems. Our primary goal for students was to create an enhanced, interdisciplinary understanding of the interplay of these systems and a more attuned sense of how food is a civic issue.

To meet our goals, we developed a set of shared learning outcomes (Table 1) for students in courses in the Food for Thought cluster. We based these on SENCER Ideals of civic engagement, focusing on contested issues and encouraging student engagement through multidisciplinary perspectives, as a guide for our work of demonstrating to our students the value and interconnectedness of natural sciences, social sciences, and humanities disciplines. In order to address those outcomes, over the years we have crafted a variety of projects that students from two or more courses engage in as part of the requirements of those courses. Many of these projects included community organizations. Some of the projects and activities required funding external to our departmental budgets, especially those that involved the preparation and sharing of food and those that required travel. In many semesters, we also offered our students out-of-class experiential learning opportunities such as guest speakers, movie screenings, or farm tours.

Each semester’s projects and the level of collaboration and coordination varied according to which courses were offered that particular semester. During the first years of the cluster, we created large-scale projects such as the Harvest Bounty Shared Meal and the Food and Nutrition Guidelines, which included every cluster course taught that semester. These projects required students to work in small teams (four to eight students) with students in several other classes. Highly coordinated, large-scale projects required intensive time preparation and collaboration between four to seven different faculty members (often including faculty who were not teaching a cluster course but who helped with project coordination) and our students.

Given the desire to continue meaningful projects, while recognizing the other demands of academia, in later years we created small-scale, yet still intensive, cross-course projects by partnering two or three classes and faculty members, who facilitated coordination when necessary. All projects, regardless of the scale or number of classes or students, involved a presentational component (i.e., students sharing and/or creating information to be shared with either community members or students in another class). To further simplify, we sometimes asked students to work in teams with their own classmates rather than in teams with students from other classes, thereby reducing the need for facilitated, extensive, out-of-class meetings. Most recently, we have been able to organize these coordinated small-scale projects into a showcase-style larger event held once an academic year, such as the Food Day event or the Festival of Dionysus in the Mountain South event. These projects, and other projects implemented over the past eight years, are summarized by semester in Table 2. Supplementary campus and community activities intended to enhance student experience with food, food systems, and culture are also included in Table 2.

To illustrate the difference between the multi-course large-scale projects and some more manageable small-scale projects, we offer four examples. The Food and Nutrition Guidelines Policy Project was offered three times between 2007 and 2009. In the 2008 version of this large-scale project, students studying Food Politics were organized into two committees charged with overseeing the development of guidelines for UNC Asheville; one committee focused on food guidelines and the other focused on nutrition guidelines. These students became experts in a specific food or nutrition topic and then drafted and discussed with each other a recommendation in their area of expertise. The committees then received oral or written suggestions from students in the other Food for Thought cluster classes, discussed all the guidelines as a committee, and then each produced a set of proposed guidelines for our campus. Students studying Nutrition, individually or in teams of two, prepared written comments on a specific topic related to food (local, organically grown, genetic modification, waste reduction, etc.) or nutrition (achieving healthy weight, fat, sugar, salt, fiber, whole foods, etc.). Working in small groups (three to four students), students studying Food of Chemistry measured the amount of sodium in several different foods offered in the dining hall, and students studying Land Economics developed evidence-based arguments for local or organic food, specific procurement strategies, and changes to the UNC Asheville food environment. All classes presented their analyses, guidelines and recommendations to the Food Politics student committees, typically as both writ- ten and oral recommendations, for inclusion in the food guidelines. The Food Politics students then formatted the data, recommendations, and rationale from the other courses into an eighty-page document and presented their findings to campus decision-makers in December 2008. Approximately 120 people were involved (including 100 students and 20 members of the campus community including faculty, administration, and Dining Services staff), and classes met jointly at least three times over the term. Campus dining services responded by making a series of changes to their food purchasing and labeling that have largely been in place since that time. Based on their post-project reflections, Food Politics students reported that they had a sense of empowerment from participating in this ambitious effort with tangible policy change implications.

Another example of a large-scale cross-course project was the Plants, Nutrition, and Latino Food and Culture Project in Spring 2011, which involved courses from three different disciplines: Biology, Health and Wellness, and Foreign Languages. Student groups from each of the three courses were assigned a Plant of the Americas, designated by the Plants and Humans instructor as native to the Americas, and worked together to create a joint poster presentation for the UNC Asheville Undergraduate Research Symposium. Students researched each plant through the lens of their particular discipline, participated in a workshop on abstract writing, and attended a panel discussion by local food experts who use these plants in their restaurants. They then created the final posters that included botanical information (Plants and Humans students), nutritional information about the plant (Nutrition students), and a traditional recipe along with relevant cultural information (Spanish students). Additionally, students studying Nutrition completed a nutritional analysis of the chosen recipe, and students studying Spanish created a summary in Spanish of basic plant information shared by their peers to accompany the bilingual recipe; the posters were also shared with a YWCA Latino health program. Campus and community members were invited to learn about and taste the foods prepared, and students were evaluated on their presentations. Students from each course had to navigate group work within their own course as well as coordinate preparing the poster with groups from other courses. At the Symposium, students reported learning much more about the plant because of the collaboration with students from other disciplines.

A third example of a large-scale project involved three classes: Pathophysiology of Chronic Conditions and Illnesses, Sociology of Gender, and Health Communications. Students generated evidence-based and socially aware health recommendations for the YWCA’s Diabetes Wellness and Prevention Program. This project engaged students with underserved populations in the Western North Carolina region and empowered people living with diabetes with practical information about their chronic condition. The Pathophysiology students synthesized the complex science underlying type 2 diabetes for students in the two other courses. Sociology of Gender students examined the scientific messages for evidence of bias and considered how health messages are presented in the media. Finally, Health Communications students worked to optimize the health message for people in the community who were living with diabetes and who had varied educational backgrounds. The final products from students in the Pathophysiology and Gender courses were poster presentations with various perspectives on diabetes. Health Communication students presented their social marketing campaign strategies to the YWCA Diabetes Prevention Program Coordinator orally, and in writing to the students in the other classes. Students in all three classes were highly motivated to translate their knowledge to help others better understand and prevent this very challenging disease. This unique opportunity allowed students to practice educating people from diverse backgrounds about relevant health topics. Additionally, students were offered immediate and meaningful feedback on their instruction from their audience.

An example of a small-scale cross-course project involved two courses, Economics of Food and Plants and Humans, and focused on the topic of economic and environmental sustainability of campus food production. Students studying biology (Plants and Humans) were assigned vegetable crops to grow in the campus organic garden. Each student wrote a research paper that explored the tradeoffs of some aspect of organic food production (e.g., heirloom vs. hybrid seeds, sustainable methods to amend the soil, or the tradeoffs of land-extensive vs. land-intensive cultivation methods). The students studying biology were then combined into groups of four to give presentations to the students studying economics that summarized the results from their research papers as well as the results of their garden project, including the yield of the crops they grew. This information was used by students in the Economics of Food class to finalize their analysis of the costs and benefits of campus food production and consumption. Groups of students in the Economics of Food class investigated several topics such as the time, money, and resource costs; legal and logistical issues; marketing; and revenue potential (cost savings) associated with food produced on campus and either sold on campus or used to replace food that is currently purchased. At the end of the term, students enrolled in the Economics of Food class presented the results of their analysis to the students enrolled in Plants and Humans and to campus administrators. Reflection assignments revealed that students in both classes learned a great deal not just about their assigned topic but also about the environmental and economic issues associated with campus food production. One telling feature of these reflections was that a great number of students reported learning that these issues were much more complex than they initially believed.

Even though we have interpreted our class feedback from students on cross-class projects of these types as positive, we also strove from the beginning of our collaborative teaching endeavors to objectively determine the effectiveness of this type of instruction and the student learning gains from engagement in cross-course projects. To this end, we have implemented numerous modes of assessment, which are described below.

Assessment of the Food for Thought Cluster Pedagogy

Since the inception of the Food for Thought cluster, we have worked together to assess whether cross-course projects and cluster activities impact student learning, using a variety of assessment methods (Wingert et al. 2011 and 2014). Our first assessment strategy utilized an adapted version of SENCER’s Student Assessment of their Learning Gains (SALG) instrument. Since the SALG is designed for individual STEM courses, rather than for a cluster of courses across disciplines, we developed an instrument designed to measure the Food for Thought cluster learning outcomes (Table 1). Our adapted SALG was used as an entrance (start of semester) and exit (end of semester) survey instrument administered electronically using a quiz form in an internet-based course management system (Moodle).

The entrance and exit assessment surveys had sixty-one items, including eight demographic questions, one open-ended question, and fifty-two questions addressing learning outcomes and course mechanics using a five-point Likert scale. 106 students completed both surveys. The learning outcomes questions were organized into four parts: academic attitudes; civic engagement and informed consumer; interdisciplinary and disciplinary skills; and understanding of food, food systems, food choices, and social and biological relationships (Table 1). At the end of each survey students were also asked to answer the following open-ended question: “Please list three food issues that interest you most.” Students were asked to list three entries in order to complete the survey.

Results from this first assessment demonstrated that our collaborative, multidisciplinary approach using cross-course projects across cluster courses led to statistically significant increases in student perceptions of their learning gains, especially related to civic engagement (effect size (∆) = 8.0%; p = 0.036), food literacy (∆ = 13.8%; p < 0.0001), research literacy (∆ = 9.7%; p = 0.0018), information and communication skills (∆ = 9.2%; p = 0.0003), and understanding food systems (∆ = 14.2%; p< 0.0001). We attributed much of the positive change in students’ evaluation of their learning to the cross-course projects and activities. Qualitative analysis of the open-ended questions revealed that students’ interest in and engagement with food issues increased over the course of the semester, especially with respect to changing the food production and consumption systems related to the American diet (Wingert et al. 2011).

In a second assessment, we sought to extend our findings on students’ perceptions of learning gains by assessing the cluster’s impact on student learning, specifically regarding integrative learning across disciplines (Wingert et al. 2014). We focused on three of our student learning outcomes (Table 1) that require integrative learning: civic engagement, informed consumer, and food systems and choices. Specifically, we tested whether exposure to a focused, multidisciplinary learning environment (the Food for Thought cluster courses and activities), could result in integrative, interdisciplinary learning gains (Rhodes 2010) compared to a control group of students. In our assessment instrument, we asked students to demonstrate their achievement in integrative learning by writing statements in response to prompts about a New York Times article. The article was specifically selected because it is complex and interdisciplinary in focus. It explained the costs and benefits of the popularity of quinoa, which, although endemic to the Andes, has become popular in the U.S. due to its nutritional profile, forcing change onto the culture and economy of Bolivia. In addition, this specific topic was not discussed in any of our courses.

Using a corresponding evaluation rubric, we tested the students’ evaluation of the quinoa article to determine if exposure to a focused, integrative learning environment could result in superior critical thinking skills and abilities to understand food systems, integrate learning across disciplines, and make informed decisions about food choices, markers of three of our student learning outcomes: civic engagement, informed consumer, and food systems. The instrument and rubric were based on the Critical Thinking Value Rubric created by the AAC&U (Rhodes 2010) and on studies in which critical thinking is assessed by asking students to respond to a specific article or reading. Two studies that informed our protocol prompted students to read a designated article or reading and then to evaluate an issue in written form based upon the article or reading; these responses were then evaluated using a rubric designed to assess critical thinking skills (Miller 2004; Connors 2008).

The quinoa evaluation assessment instrument was completed by 161 students in nine Food for Thought Cluster classes and by 177 students in nine control classes. Our results showed that Food for Thought students scored significantly higher on the evaluation rubric compared to controls (∆ = 14.0%; p = 0.0008). Rubric scores also significantly correlated with the number of cluster courses taken (Spearman r = 0.32; p = 0.04), demonstrating the increased gain of interdisciplinary, integrative learning skills with each multidisciplinary cross-course project experience. Importantly, rubric scores did not correlate with increasing year in college, indicating that our students’ learning gains were related to the learning experiences specific to the cluster and not to academic maturity (Wingert et al. 2014).

Our earlier research also showed that students perceived gains in their communication skills (Wingert et al. 2011). Our most recent assessment efforts have sought to objectively determine whether these gains are demonstrable. Student communication skills will be evaluated from cross-course project student products, such as group poster presentations and two to three minute “selfie” videos of students describing their class research. Rubrics have been designed, based on the Critical Thinking Value Rubric created by the AAC&U (Rhodes 2010), to quantitatively assess communication abilities.

Faculty Reflections on Multidisciplinary Teaching and Integrative, Interdisciplinary Learning

By making a conscious decision not to “go it alone,” we (the faculty involved in this type of collaborative teaching and scholarship) have benefited in multiple ways. We have not only implemented opportunities to provide students with meaningful interdisciplinary learning (described above), but we have also added to our teaching tools, learned about each other’s disciplines, delved into new areas of research, forged friendships, and have had a remarkable amount of fun along the way.

Student Learning Gains

The first reason we have chosen to not “go it alone” is that we are convinced that it makes a difference for our students. We have previously highlighted the evidence we collected that demonstrates that students have both real and perceived gains in their learning. We suggest that they benefit from seeing an integrated model of teaching and learning in front of them—we undo before their eyes illusions they (or we) may have about solutions being simple or solvable from a single perspective. Instead, they are offered the opportunity to understand disciplines’ capacities to illuminate facets of a complex problem and to witness that collaboration across disciplines offers more synthetic solutions.

Teaching Gains

We also recognize a number of benefits we receive from abandoning the strategy of going it alone, and these are worth highlighting for those who might otherwise believe it is too big an effort for faculty to undertake. One particular benefit is the enhanced perspective we have on our own teaching. Pursuing the interdisciplinary learning in this collaborative manner ensures that our understanding of our effectiveness as teachers begins with us, and it has the benefit of arising organically from a collaboration of faculty who are actually doing the teaching. We have the opportunity to critically examine our strengths and weaknesses in the classroom and quickly act to build on our successes and ameliorate any deficiencies. As an example, one colleague learned from our assessment of cross-course projects that he is successful in guiding students through the steps necessary to write a good research paper, but not as successful in having them translate that research into posters and oral presentations. It is also rare for faculty to truly understand the student experience as they work through our curriculum because we generally only see them in courses in our home department. Our collaboration gives us a more nuanced understanding of the student academic experience and allows us to develop a more frank assessment of the strengths and weaknesses of students and faculty in our individual departments with respect to faculty and students in other departments.

Faculty Learning Gains

Another significant outcome of our collaborative teaching and research experience has been the opportunity to learn more from other team members about each other’s disciplines, including disciplinary perspectives and pedagogical methods. We are all now more literate in each other’s fields; this is, in and of itself, an outcome that is probably worth the time and energy we have put into this joint endeavor.

Faculty Scholarship Gains

We have also gained from the unique opportunity to participate in the intersection of the scholarship of teaching and learning with scholarship in our disciplines. It is more likely, however, that disciplinary scholarship and the scholarship of teaching and learning (SoTL) will coincide for the social scientists than for our colleagues in the natural sciences and humanities. That is true simply because the scholarship that social scientists pursue in their discipline bears more similarity to our scholarship of teaching than that pursued by natural scientists and faculty in the humanities. We are all teachers, so one can argue that none of us should feel conflicted as we consider undertaking pedagogical research, but it may be that someone whose research training is in the natural sciences or the humanities would need to work harder to absorb and integrate the pertinent literature, and would need more assistance in study design, analysis, and interpretation of results than would a social scientist who regularly uses these methods in their disciplinary research. Moreover, although the scholarship of teaching and learning is a project shared by scholars from all disciplines, both explicit and implicit norms about how to conduct SoTL research come primarily from the social sciences. As a team, we have become stronger in our understanding of strategies for navigating those norms. From these opportunities to learn from each other, we have all benefited both individually and collectively from the sharing of our disciplinary research expertise. It has also been a real pleasure to implement curricular ideas and write collaboratively on a topic of shared interest— innovative ways to promote student learning—and to model integrated learning for our students.

Conclusions

In the face of many competing pressures on our time and the fact that our general education curriculum is in a state of flux, we as professors must continuously reaffirm our commitment to our work together and seek recognition and support from our university to continue these efforts. We have developed both a meaningful multidisciplinary collaboration and, indeed, friendships over these years and do not wish to see this partnership dissolve. Although we risk overworking ourselves if we do not locate efficiencies in our work, we also fear that our productivity and success as teachers and researchers will decline unless we find a way to adapt to the changing needs of society, the changing learning styles of students, and a changing curriculum.

Even at a small school, it is rare to build a collaboration across departments and divisions that allows faculty to develop trust and empathy across the university. Because we have worked closely together we have come to understand each other’s unique teaching and research environments and to break down barriers to communication across disciplines. Information gleaned from the experiences of these faculty members allows us to more effectively advocate for a work environment that is more humane and equitable.

We are engaged faculty—engaged in meaningful lines of inquiry with students both in our class and our colleagues’ classes, engaged with the discipline of our own training as well as the disciplines of our colleagues, and directly engaged with each other. Perhaps equally important, however, is the shared recognition of our own disciplinary and individual limitations that comes from this engagement. The economist among us will never teach a chemistry or nutrition class, just as the biologist among us will not teach a sociology class. Knowledge of chemistry, economics, or Spanish alone will not be sufficient to solve the world’s problems. While we (and our students) are now more able to speak each other’s language and recognize our own discipline’s strengths in contributing to solutions, we also recognize that the strongest teams, those teams needed to solve the world’s most complex problems, are composed of individuals with exceptional disciplinary strength.

In a recent essay regarding AAC&U initiatives for integrative learning, Ann Ferren and her co-authors argue that

Developing faculty’s capacity for leadership in integrative learning, then, is not just about working with other faculty for institutional change, but also demonstrating for students what this form of leadership looks like: adaptive, collaborative, inquisitive, reflective, and boundary-crossing.

The process of implementing integrative learning on a campus becomes a teaching tool, a means of modeling for students how to engage thoughtfully and actively in their communities toward a common purpose (Ferren et al. 2014/2015, 6).

Our experience on our campus reflects this spirit, and we concur with their conclusion that providing a model of a dynamic, functional, multidisciplinary team demonstrates to our students that no one person faces the burden of solving the problems associated with food insecurity or climate change. Indeed, choosing not to “go it alone” models engaged citizenship for our students, other faculty, and ourselves. Assessments of our multidisciplinary model provide evidence for student gains in perceptions of integrative learning and accomplishment of our goal to develop more informed citizens with multifaceted perspectives on complex civic issues. The context we provide for our students through our cross-course projects and meaningful cross-disciplinary action is exactly what is needed for promoting citizen science.

About the Authors

Sally Wasileski is an Associate Professor in the Department of Chemistry at the University of North Carolina Asheville. She earned her Ph.D. from Purdue University and completed a post-doc at the University of Virginia, specializing in analytical chemistry and using computational methods to investigate reactions occurring at metal surfaces. Her research focus with under- graduate student researchers is on understanding the catalytic reactions that generate hydrogen fuels from biomass; in addition, she mentors student research on quantifying environmental contaminants. Sally teaches General Chemistry, Analytical Chemistry, Instrumental Analysis, Physical Chemistry, and a course for non-science majors called The Food of Chemistry, which is designed to teach chemistry principles through the topics of food and cooking.

Karin Peterson is Professor of Sociology and Chair of the Department of Sociology and Anthropology at the University of North Carolina Asheville. She earned a diplôme d’études approfondies (DEA) from the Ecole des Hautes Etudes en Sciences Sociales in Sociology of Art, and holds a Ph.D. in Sociology from the University of Virginia. She teaches theory, gender, and sociology of culture.

Leah Greden Mathews is Interdisciplinary Distinguished Professor of the Mountain South and Professor of Economics at the University of North Carolina Asheville. As an applied economist, she studies the intangibles in our society including those things that are not readily exchanged in markets, like scenic quality, cultural heritage, and social capital. As an interdisciplinary, systems-thinking teacher-scholar, she is perennially engaged with students and colleagues from multiple disciplines in order to enrich her intellectual life, improve her (and others’) understanding of the world, and gain new perspectives.

Amy Joy Lanou is Associate Professor and Chair of the Department of Health and Wellness at University of North Carolina Asheville. She received her doctoral degree in Human Nutrition from Cornell University and brings work experience in nutrition promotion and policy advocacy at the Physicians Committee for Responsible Medicine in Washington, DC to her work at UNC Asheville. She teaches Nutrition, Health Communication, and Food Politics and Nutrition Policy and focuses on dietary prevention of chronic disease and the use of experiential food education to influence dietary choices.

David Clarke is a botanist and Professor in the Biology Department at the University of North Carolina Asheville. He earned his Ph.D. from the University of Illinois at Urbana-Champaign and was a postdoctoral fellow at the Smithsonian Institution. He works with colleagues in UNCA’s Biology Department on the conservation biology of threatened plants such as American ginseng and Virginia spiraea, as well as the ecological threats posed by non-native invasive species. He also works in the rainforests and savannas of Guyana, South America to document its rich plant diversity and has had a new species of passionflower from Guyana (Dilkea clarkei) named in his honor.

Ellen Bailey is a Lecturer in the Department of Foreign Languages at the University of North Carolina Asheville and occasionally teaches in the Department of Health and Wellness as well. She earned her M.A. in French/Foreign Language Pedagogy from the University of Delaware and her Master of Public Health from the University of North Carolina Chapel Hill. Ellen enjoys working with students and community members to better understand how culture and environment influence health behavior.

Jason Wingert is an Associate Professor in the Department of Health and Wellness at the University of North Carolina Asheville. He earned his Master of Physical Therapy from the University of Missouri Columbia, and his Ph.D. from Washington University in St. Louis. He teaches Anatomy, Physiology, and Pathophysiology. In addition to teaching, he enjoys advising students and mentoring them in his laboratory, where he studies sensorimotor function in older adults and people with diabetic peripheral neuropathy.

References

Connors, P. 2008. “Assessing Written Evidence of Critical Thinking Using an Analytic Rubric.” Journal of Nutrition Education and Behavior 40: 193–94.

Ferren, A., C. Anderson, and K. Hovland. 2014/2015. “Interrogating Integrative Learning.” Peer Review 16/17 (4/1): 4–6.

Huber, M.T., P. Hutchings, R. Gale, R. Miller, and M. Breen. 2007. “Leading Initiatives for Liberal Learning.” Liberal Education 93 (2): 46–51.

Miller, D.R. 2004. “An Assessment of Critical Thinking: Can Pharmacy Students Evaluate Clinical Studies Like Experts?” American Journal of Pharmaceutical Education 68: 1–6.

Rhodes, T.L., ed. 2010. Assessing Outcomes and Improving Assess- ment: Tips and Tools for Using Rubrics. Washington, DC: Association of American Colleges and Universities.

Schneider, C.G. 2004. “Changing Practices in Liberal Education: What Future Faculty Need to Know.” Peer Review 6 (3): 4–7.

SENCER (Science Education for New Civic Engagements and Responsibilities). 2015. The SENCER Ideals. http://www. sencer.net/About/sencerideals.cfm (accessed January 18, 2016).

Wingert J.R., S.A. Wasileski, K. Peterson, L.G. Mathews, A.J. Lanou, and D. Clarke. 2011. “Enhancing Integrative Experiences: Evidence of Student Perceptions of Learning Gains from Cross- course Interactions.” Journal of the Scholarship of Teaching and Learning 11 (3): 34–57.

Wingert J.R., S.A. Wasileski, K. Peterson, L.G. Mathews, A.J. Lanou, and D. Clarke. 2014. “The Impact of Integrated Student Experiences on Learning.” Journal of the Scholarship of Teach- ing and Learning 14 (1): 45–58.

 

Download (PDF, 740KB)

Students as Curators: Visual Literacy, Public Scholarship, and Public Health

Debby R. Walser-Kuntz,
Carleton College
Cassandra Bryce Iroz,
Carleton College

Visual Literacy and Science

Visual literacy is a set of abilities that enables an individual to effectively find, interpret, evaluate, use, and create images and visual media. Visual literacy skills equip a learner to understand and analyze the contextual, cultural, ethical, aesthetic, intellectual, and technical components involved in the production and use of visual materials. A visually literate individual is both a critical consumer of visual media and a competent contributor to a body of shared knowledge and culture (Hattwig et al. 2012, 62).

Designing a public exhibition is one way for students to meet the goals of the Visual Literacy Competency Standards for Higher Education quoted above. Students able to combine visual literacy with strong writing will be better prepared“to function creatively and confidently in the working environments of the twenty-first century” (Weber 2007). Scientists rely on visual images, animations, and 3D models to convey research findings and concepts, yet educational research shows that students“do not necessarily automatically acquire visual literacy during general instruction,” but must be explicitly taught these skills (Schönborn et al. 2006). Exhibition design provides a powerful pedagogical approach, helping students learn to “author” in a manner distinct from traditional writing.

Libraries and museums“educate and inform the public about the subject of the exhibit in a balanced and usually unbiased way” (Walbert 2004) and expand the general public’s “engagement with and understanding of” a topic (Smithsonian Institution 2002). In order to successfully engage people of all backgrounds, exhibit designers must focus on and carefully consider their audience (Smithsonian Institution 2002). Producing such exhibits encourages students to think creatively and to practice a range of skills, including critical thinking, problem solving, research, teamwork, goal setting, and technological literacy (Walbert 2004). Further, exhibitions that are interdisciplinary, such as those dealing with public health, require students to “apply skills or investigate issues across many different subject areas or domains of knowledge” (Great Schools Partnership 2014). Because the final product involves everyone, students must articulate their ideas and defend their choices in an iterative process (Great Schools Partnership 2014). This group approach requires students to work in a multi-member team resembling what they may encounter in a future career (Smithsonian Institution 2002). In addition to developing collaborative skills, increasing visual literacy, and fostering innovation, exhibition design assignments increase student engagement with course content and “facilitate student expression in media that are not purely textual” (Lippincott et al. 2014).

Exhibition Design as a Teaching Strategy: Students as Curators

We incorporated a public exhibition as a final project for Public Health in Practice, a program novel in its design of combining domestic study away with local academic civic engagement (ACE) projects (Walser-Kuntz and Iroz 2015). Students enrolled in an introductory course to learn about public health models, best practices for working with and in a community, and effective communication of health messages. They then studied off campus for two weeks in both the state’s and nation’s capital cities and participated in a follow-up course back on campus; it was in this final course that students developed the exhibition. Inspired by the Association of Schools and Programs of Public Health “This is Public Health” campaign, we titled our exhibit “This is Public Health: Public Health in Practice.” The goals of the exhibit included (1) sharing our experience with the broader campus, (2) educating others on important aspects of public health, and (3) exposing students to a career field they might be interested in pursuing. As public health is an interdisciplinary field, we aimed to show how it is approached from multiple angles and how all students, regardless of major, might participate. The central location of the library—both geographically and intellectually—allowed students, faculty, staff, and visitors the opportunity to explore the exhibit.

Throughout the process, students engaged in many tasks required of professional museum exhibition cura- tors, including brainstorming, identifying key themes, and thinking about audience “take aways,” all while presenting a balanced view (Walbert 2004). To guide the process, the class partnered with the library curator; partnering made the endeavor “less risky” and more successful, as we were new to exhibition design as a pedagogical approach (Lippincott et al. 2014). While the librarian’s expertise in visual design and exhibit planning was invaluable, she was new to public health concepts and thus provided an important perspective. She helped us balance detail and eliminate jargon that we had become accustomed to using in our own conversations with one another and with public health professionals.

Although the curator served as a consultant, the students built the exhibition from the ground up with few imposed guidelines or restrictions and took on all the typical roles required for successful execution of an exhibit. These roles include curator (responsible for the overall concept of an exhibit), designer (ensuring the material is understandable, visually appealing, and coherent), and educator (linking content to the audience) (Smithsonian Institution 2002). The entire process encouraged students to reflect on their learning, synthesize and simplify concepts for a general audience, and consider topics from a different perspective. The iterative process of designing the exhibition required a constant review and refinement of ideas, forcing a concise articulation of key points and a clear rationale for the inclusion of an image or design feature. Fonts and color choices received close scrutiny, and the final product required open discussion and compromise. We invited our our academic technologist specializing in presentation and visual design to walk through a mockup of our exhibit and give feedback on images, written messages, and the overall feel of the exhibit. This formative assessment activity continued “the exciting dialogue between exhibit makers and exhibit users” and improved the final exhibit (McLean 1993).

Exhibition Design as a Teaching Strategy: Student Outcomes

Planning the exhibit met the visual literacy competency standard number six: the visually literate student designs and creates meaningful images and visual media (Hattwig et al. 2012). Learning goals met by each student included producing visual materials for scholarly use, using design strategies and creativity in image production, experimenting with image-production tools, and revising work based on evaluation (Hattwig et al. 2011). It allowed us to authentically return to “communicating health messages,” a topic covered earlier through research projects, classroom activities, and visits with public health professionals. One particular classroom activity required students to select, analyze, and present an infographic while the class dis- cussed its effectiveness. Infographics are tools frequently used to disseminate public health information to a general audience; thus this media format served as inspiration for the exhibit design. On our study away, students visited with a science museum curator who shared the importance of considering the cultural and educational backgrounds of a diverse audience when communicating and translating science. This visit informed students as they curated, designed, and made decisions about the educational content of their own exhibit.

Student ownership of the project was strong; their investment throughout the process resulted in lively class discussions as we planned, compromised, and refined. The exhibit-planning process encouraged students to reflect on their experiences and synthesize all they had learned through their coursework, study away, and ACE projects into clear, concise messages for the public. In addition to gaining enhanced visual literacy and collaboration skills, their understanding of the core concepts of public health increased. Being forced to articulate complex public health models and approaches in a single sentence required a high degree of understanding (Figure 1). On occasion, students struggled with whether or not to include certain topics or images as they recognized the potential harm. This sophisticated understanding of the ethical implications of their exhibit addressed standard seven of the visual literacy standards as students followed “ethical … best practices when…creating images”; it further demonstrated how each student had become “a competent contributor to a body of shared knowledge and culture” (Hattwig et al. 2011; Hattwig et al. 2012).

Exhibitions and Civic Engagement

Our public health program emphasized working with community. To include visitors in our exhibit we included a large rolling white board with the prompt “What is public health to you?” Visitors left comments and we took photos throughout the exhibit to capture their responses. Anecdotally we heard that many students, faculty, and staff visited and enjoyed the exhibit; we did not, however, formally assess visitor outcomes. In the next iteration of the course, we will incorporate an additional “prototype” step in which we invite students from another course to provide feedback. Although the exhibit is no longer installed, it exists online with an additional interactive component (http://apps.carleton.edu/ccce/issue/health/public-health-in-practice/).

The Public Health in Practice exhibition provided a novel way to incorporate public scholarship into a course. A recent survey of liberal arts faculty indicates that an exhibition is a well-understood form of public scholarship and one that is highly regarded (Christie et al. 2015). In our case, the infographic-style posters educated visitors about important aspects of public health, while highlighting the field’s breadth and interdisciplinarity and raising awareness of related careers; the exhibit thus addressed the Institute of Medicine’s recommendation that all undergraduates learn about public health (Petersen et al. 2013). Although our exhibit focused on public health, most science courses touch on topics that could become the basis for interesting and educational exhibits that provide an enriching opportunity for students and public audiences alike.

About the Authors

Debby Walser-Kuntz is a Professor of Biology and the Broom Faculty Fellow for Public Scholarship at Carleton College in Northfield, MN. Debby received her Ph.D. in immunology from the Mayo Graduate School in Rochester, MN. Her research focuses on the impact of environmental factors, including the plastics component bisphenol-A and a high fat diet, on the immune system. She ventured into the world of academic civic engagement more than ten years ago after recognizing that her bright and talented students could still learn, and in fact might learn more, while sharing their knowledge with others.

Cassandra Iroz is a 2014 graduate of Carleton College with a B.A. in Biology. After graduation, she worked as an educational associate in Carleton’s Center for Community and Civic Engagement and as the teaching assistant for the Public Health in Practice pro- gram. In this role she assisted in organizing and facilitating coursework, travel, and community based academic civic engagement projects all relating to public health.

References

Christie, L., P. Djupe, S. O’Rourke, and E. Smith. 2015. “Whose Job Is It Anyway?: The Place of Public Engagement in the Liberal Arts.” Working Paper, Furman University.

Great Schools Partnership. 2014. The Glossary of Education Reform: Exhibition. http://edglossary.org/exhibition/ (accessed December 17, 2015).

Hattwig D. J. Burgess, K. Bussert, and A. Medaille. 2011. ACRL Visual Literacy Competency Standards for Higher Education. Chicago: American Library Association. http://www.ala.org/ acrl/standards/visualliteracy (accessed December 17, 2015).

Hattwig, D., K. Bussert, A. Medaille, and J. Burgess. 2012. “Visual Literacy Standards in Higher Education: New Opportunities for Libraries and Student Learning.” Libraries and the Academy 13 (1): 61–89.

Lippincott, J., A. Vedantham, and K. Duckett. 2014. “Libraries as Enablers of Pedagogical and Curricular Change.” http://www. educause.edu/ero/article/libraries-enablers-pedagogical-and- curricular-change (accessed December 17, 2015).

McLean, K. 1993. Planning for People in Museum Exhibitions.

Washington, DC: Association of Science-Technology Centers.

Petersen, D., S. Albertine, C. Plepys, and J. Calhoun. 2013. “Developing an Educated Citizenry: The Undergraduate Public Health Learning Outcomes Project.” Public Health Reports 128: 425–30.

Schönborn, K., and T. Anderson. 2006. “The Importance of Visual Literacy in the Education of Biochemists.” Biochemistry and Molecular Biology Education 34 (2): 94–102.

Smithsonian Institution. 2002. The Making of Exhibitions: Purpose, Structure, Roles, and Process. Washington, DC: Office of Policy and Analysis.

Walbert, K. 2004. “Museum Exhibit Design.” http://www.learnnc. org/lp/pages/629 (accessed December 17, 2015).

Walser-Kuntz, D., and C. Iroz. 2015. “Public Health in Practice: Combining Local Academic Civic Engagement with Domestic Study Away.” Working Paper, Carleton College.

Weber, J. 2007. “Thinking Spatially: New Literacy, Museums, and the Academy.” Educause Review 42 (1): 68–69.

Download (PDF, 798KB)

CCSS/NGSS Pilot for Library Summer Reading Club: Informal K-8 STEM Learning as a Bridge for Formal Scholastic Learning

Charles B. Greenberg,
Murrysville Community Library
Nancy R. Bunt,
Math & Science Collaborative
Jamie K. Falo,
Murrysville Community Library
Michael Fierle,
Math & Science Collaborative
Barbara Lease,
Math & Science Collaborative
Corinne Murawski,
Math & Science Collaborative
Gabriela Rose,
Math & Science Collaborative
Cynthia A. Tananis,
Collaborative for Evaluation and Assessment Capacity (CEAC), University of Pittsburgh
Keith Trahan,
CEAC, University of Pittsburgh
Dana Winters,
CEAC, University of Pittsburgh

Abstract

The applied research pilot project of this report seeks to advance K-8 STEM learning by bridging in-school, scholastic learning sessions with informal, out-of-school, summertime learning at public libraries. Professional library programming for children and families around reading and learning is already an integral component of meeting community needs, especially during the summer months when skills can be lost. Annually, and nationally, public libraries have been sharing a themed set of guidelines and activities for Summer Reading Clubs, and activities for K-8 Summer Reading Clubs. The pilot program has been designed to professionally train librarians, administrators, and volunteers for orienting these children, their parents and guardians, to STEM learning in particular, based on scholastic Common Core State Standards (CCSS) in mathematics/English language arts, and Next Generation Science Standards (NGSS). This report describes the activities and progress in the first year of the two-year pilot, including results from an external evaluation.

Introduction

Public Library of the Conflicted Civic Mind

If a community is fortunate enough to have its own public library, that library is often openly associated with civic pride, and, at least within the core body of the library’s users and supporters, with a genuine love of books and reading. For some modern-day cynics, nevertheless, the public library is perceived as only a side street of the new main road paved for the Internet. This paper will demonstrate that such a perception is false; we will show how libraries can reinvent themselves to an even larger educational purpose, one that is integral to scholastic STEM learning, and one that can better withstand cynical views.

The Murrysville Community Library is a non-profit corporation, with a Board of Directors, with its own Articles of Incorporation, with an annual budget plan, and with a strategic plan; it is no different from any other corporation, but because it serves at the pleasure of the community, the conflicting views between user and non-user, book-lover and cynic, impact annual funding and viability. In the state of Pennsylvania, where we serve in the southwest corner, there are 445 such public libraries and twenty-nine Districts into which the libraries are grouped regionally (PDE 2012). Districts sometimes correspond with counties.

On Building a New Model

In our District of twenty-four libraries, the Westmoreland Library Network (WLNTM), we are in the midst of piloting a new model, one that is intended to eventually overcome not only cynical perceptions, but complacency as well, and to fill a societal educational void (Greenberg and Falo 2014–15). This is really the goal of the pilot project. It integrates a summertime, K-8 educational library experience—based on Common Core State Standards in mathematics/English language arts and Next Generation Science Standards—with formal, standards-based, scholastic learning (NGSS 2014; PA Common Core 2012; Widener 2014). The two-year pilot is about bridging fall/winter/spring scholastic semesters with enhanced and more purposeful, standards-based summer programming. This paper is a report on the first year’s activities and progress, including an external evaluation by the Collaborative for Evaluation and Assessment Capacity (CEAC), University of Pittsburgh School of Education.

Background

Library Strengths and Addressing a Weakness

In Pennsylvania, public libraries are well-established, stable resources for information access, reading for pleasure, and informal learning. They operate with a common core of information services. Library Directors and some other staff are trained at the level of a university M.S. Public libraries adhere to specific state library codes, and they operate under the state’s Pennsylvania Department of Education, the Office of Commonwealth Libraries. However, while skilled in reading literacy, staff is rarely trained in STEM subject matter or pedagogy. The two-year pilot project in progress seeks to advance student interest in or disposition towards STEM, along with actual learning and understanding of STEM concepts, by building library staff capacity to include STEM in its programming and to make more connections with CCSS and NGSS standards. It seeks to reach across a full spectrum of learning groups in one large PA county/ District, with rural to suburban to urban population, and also to be comprehensive with respect to gender, race, ethnicity, and economic means.

Summer Reading Club as Central to the Vision

Many public libraries in all fifty states already participate in an organized Summer Reading Club activity, using a nationally themed set of guidelines and activities structured by the Collaborative Summer Library Program (CSLP 2014). For 2014, the designated theme was “Science: Fizz, Boom, Read!,” a first-time explicit focus on science in twenty years of theme-setting. The pilot is designed to take advantage of the established and ongoing reading program and its popularity, as well as the favorable theme. It is doing this by training library staff and key programming volunteers in advance of summer to orient children, parents, and guardians to CCSS/ NGSS learning, under the banner of the Summer Reading Club. The collaborating trainers, who otherwise train scholastic teachers and administrators in their usual role, are Mathematics & Science Coordinators from southwestern PA’s Math & Science Collaborative (MSC), of which more will be said below. Those who are trained then become trainers for all participants, hopefully leading to the lifelong standards-based learning for all that is needed throughout our society.

MSC Trainers and Library Trainees

For eleven counties, 138 public school districts and non-public schools, MSC stands as the area’s comprehensive catalyst for advancement of K-12 STEM learning. MSC’s multifaceted STEM program, by which 1250+ teachers and administrators have received training over about twenty years, has: (1) sustained a teacher culture of lifelong professional learning by the internal sharing of best practices and external enrichment; (2) taught teachers to take more personal responsibility for lifetime professional learning; (3) institutionalized a complex array of professional communication and training networks for teachers, administrators, and institutions of education; (4) established the MSC as a leading proponent for CCSS and NGSS standards. In 2012, the MSC earned the prestigious Carnegie Science Center’s Leadership in STEM Education Award in recognition of its exceptional impact. It is well positioned to repurpose its usual teacher-training model for use in the public library world.

Key trainees include Library Directors, Children’s Librarians, volunteers, and Board Directors. The Directors are important for building administrative support for the initiative; in 2014 four Directors from the Murrysville Community Library (MCL) Board and/or its fundraising MCL Foundation Board participated. The two Boards work closely, even sharing a Strategic Plan; two trainees serve on both Boards. For this first year, Murrysville Community Library was targeted as the particular focus for training, rather than the WLN District as a whole, although participants came from ten libraries in all. In 2015 the emphasis will shift to the WLN District as a whole. MCL’s Library Director and Youth Services Coordinator participated fully.

MCL is a particularly good starting point for the pilot because of its depth of experience and recognized skill in children’s programming. The MCL offers numerous special programs for patrons of all ages, both on-site and off, some seasonally. The Children’s Library was recognized as the 2009 statewide winner of the prestigous PA Library Association’s David J. Roberts EXCEL Library Service Award. Furthermore, the MCL consistently draws about 900 youngsters annually for its Summer Reading Club, which is significant in a service area of about 28,000 people.

Specific Goals and Hypotheses

The project’s specific goals are (1) to incorporate STEM learning in nationally themed K-8 Summer Reading Club programming in public libraries, as well as other children’s programming during the year, as informed by curriculum grade-level standards; (2) to bridge grade-level learning during the otherwise low-STEM content, out-of-school summer months; (3) to make volunteers and family members a part of the learning, so that children and their families realize enrichment in both the library and home settings. The year-one parental experience is limited to on-site observation and/or child engagement at home; more direct training may be possible when staff members are better prepared as trainers themselves.

The research and development hypotheses are that: (1) in-school student STEM learning can be advanced, given continuity, and sustained by repurposing in-school MSC practices to out-of-school children’s programming in public libraries; (2) all children can learn science and mathematics; (3) awareness and knowledge of 21st-century skills for life- long, “life-wide,” and “life-deep” STEM experiences can be fostered in public library settings for family groups.

Methods

Workshops

Eight half-day training workshops were conducted from January through April 2014. Each was led by a pair of staff members from the MSC, most often paired as two Science Coordinators or two Math Coordinators. The workshops included explanative discussion by the Coordinators, hands-on activities, and extensive interactive discussion. The hands-on activities were connected to children’s literature that served as the pathway to important mathematics and/ or science processes and content.

For example, one session focused on number and shape patterns. The MSC facilitator read aloud the story “The Grapes of Math” (Tang 2004). Trainees then worked in small groups to solve a particular riddle from the story. Each trainee group shared its riddle and solution strategy with the other trainee groups. The ensuing plenary discussion focused on the following essential questions:

  • What mathematical or scientific concepts/ideas did the riddles (or activity) illuminate?
  • What insights/ideas did the activity leave with you?
  • With which standards of mathematical practice (or science and engineering practices) and English language arts capacities did the riddles most require you to engage? Why?
  • What are the implications for planning your summer reading program? How might you use a task/story/ac- tivity like this in the summer reading program?

Additional examples of the mathematics and science content of the exercises are summarized in Table 1.

The number of workshop attendees ranged from ten to twenty-two, averaging eighteen. In total, there were thirty-four unique attendees for the purposes of the external evaluation to be discussed below, of which thirty-one were library trainees. The additional three were community leaders with a stake in the outcome (Mayor, Superintendent of Schools, and Assistant Superintendent); these three attended part of one workshop each. The Program Officer and a Board Director from the lead funding agency participated at part of one workshop. The number of workshops attended by library trainees ranged from one to eight, but each workshop was sufficiently illustrative of CCSS/NGSS learning that a trainee could get the main points in one session. In general, additional sessions served to reinforce learning with new math and/or science process/content connections to children’s literature, to be applied during the coming Summer Reading Club.

A Venn diagram from Michaels (2013, 59), showing the CCSS/NGSS standards for mathematical practice, science and engineering practices, and English language arts capacities, was used repeatedly as a thumbnail point of reference. The trainers discussed the fuller descriptions for each set of practices as well. They provided all trainees with more extensive written content in three-ring binders, to which ongoing reference was made. These standards describe the proficiencies being targeted for the trainees, mirroring those exhibited by a mathematically and scientifically literate individual. At every workshop, the appropriate standards were discussed in the context of exemplary, hands-on exercises, each of which was done typically in groups of three or four. The intent was always to help the trainees understand the processes and proficiencies of mathematics and science, including how to reason in a professional way, and how to communicate in an informed way. Thus, the training was about more than just mathematical and scientific content, although that too was embedded in the exercises.

External Evaluation

The MCL contracted with the University of Pittsburgh’s Collaborative for Evaluation and Assessment Capacity to evaluate the 2014-2015 program. Two surveys were constructed to examine the effect of the program on the students and the library staff, administrators, and volunteers who participated in the training, particularly with regard to how their familiarity and understanding of mathematics and science concepts progressed. Training participants were contacted via email to complete the participant survey, while parents of children who participated in the program were asked, via email, to provide the survey to their children and to assist them in its completion. Survey responses addressed the following evaluation questions:

Q1: Do participating library staff, volunteers, and/or third parties develop or extend their knowledge and understanding of STEM content and learning engagement strategies?

Q2: Do participating library staff, volunteers, and/or third parties develop or extend their application of STEM content and learning engagement strategies?

Q3: Do child and adolescent learners engage with STEM concepts and processes in their involvement in the Summer Reading Club and/or their use of the library during summer months?

Q4: Do child and adolescent learners exhibit more positive perceptions of and attitudes toward STEM concepts and processes as a result of their involvement in the Summer Reading Club and/or their use of the library during summer months?

Input data were analyzed using basic descriptive statistics for scaled responses. Qualitative analysis strategies were used for open-ended responses. Sample survey questions are shown in Table 2.

Results

Of the 34 workshop participants who were surveyed by the CEAC, 68% (n=23) responded, all of them library staff/administrator/volunteer trainees (Winters and Wade 2014). As for parents and children who participated in the program, about 6% (n=61) of the total of participants responded to the survey. The key findings from the report are as follows:

Key Findings for the Training Participants
  • Roughly half of the training participants (57%, n=12) had never received any prior professional development in mathematics and/or science.
  • More than two-thirds of respondents (71%, n=15) strongly agreed or agreed that they are better able to answer students’ questions about various STEM concepts and assist families in helping their children to learn and understand math and science.
  • A large majority (81%, n=17) indicated greater confidence in their ability to select more appropriate resources to improve children’s knowledge of mathematics and science.
  • A large majority of respondents (86%, n=18) indicated that as a result of the training they better understood how children think about mathematics and science.
  • Nearly all respondents (90.5%, n=19) indicated that as a result of the training program they could better help children appreciate the value of learning math and science.
  • Nearly all open-ended responses indicated that respondents could better help students to appreciate the value in learning mathematics and science as a result of training participation.
Key Findings for the Students
  • Gender and grade level seemed to be non-factors for student enjoyment of Summer Reading Club; however, girl respondents indicated a greater interest in science than boy respondents as a result of participating in the Science: Fizz, Boom, Read! program (girls: 80%, n=24; boys: 61%, n=19).
  • More than three-quarters of student respondents (77%, n=47) had previously participated in library programs.
  • Over half of the students (54%, n=32) indicated that, as a result of participating in Science: Fizz, Boom, Read! they understood science better.
  • Almost three-quarters of student respondents (73%, n=43) indicated an increased interest in science as a result of the Science: Fizz, Boom, Read! program.
  • Over half of student respondents (51%, n=30) indicated that they would use the library to learn more about science. Of these 30 students, 53% (n=16) indicated that they were more inclined to ask librarians questions about science.
  • A large majority of student respondents (81%, n=48) stated that they wanted to attend more programs about science and were more interested in science experiments as a result of the Science: Fizz, Boom, Read! program.

Discussion and Summary

Although the above results represent only the earliest product of what is perceived to be a multiyear and ongoing growth process, they are entirely positive and encouraging. Both trainees and students affirmed the multiple benefits to their relationships with STEM from the experience. The responses are consistent with the earlier brief report of Greenberg and Falo (2014–15), made before CEAC’s external evaluation was done. Certain early outcomes are noted in that report. The most important are these: (1) children’s librarians from multiple libraries began immediately to plan together for the year’s Summer Reading Club, which they had not done before; (2) librarians expressed appreciation for having had identified for them STEM children’s books of high value and credibility; (3) as a given, for the first time, there is now an ongoing working collaboration among scholastic trainers and librarians (as evidenced now by the co-authorship of the present report).

In the second-year Summer Reading Club 2015 timeframe, the K-8 theme is known to be Every Hero Has a Story. This theme is not explicitly science-based, as was the year-one theme, but it does still serve as a framework for introducing STEM content. Indeed, every theme can be made to include STEM content. In this case, some of the heroes will actually be scientists, mathematicians, or engineers. Some will be non-scientists who use STEM. For example, a fireman hero learns to extinguish fires using chemical combustion principles. Similar strategies can be applied generally for topics yet unnamed in subsequent years. In that way, as librarians gain knowledge and skills, they will continue to create programs and provide informed resources that encourage patron interaction with STEM concepts, even while continuing to promote reading skills and language arts.

In 2014, a first step was taken to introduce the pilot and its intent to the Superintendent of Schools and the Assistant Superintendent for Murrysville. This was done through their participation as trainees and by off-site exchanges. Each participating library will need to make this an ongoing effort. Finally, returning to the question of whether the public library has become just a side street to the main Internet thoroughfare: it has not, or at least it should not have done so, for one main reason. The Internet is a place to find everything, both information that is informed, correct, and professionally referenced, and information that is not. This goes to the matter of quality of information, and consistency with respect to quality, and, in the case of STEM subjects, adherence to the scientific approach itself. Thus, the Internet has an inherent weakness. Anyone can add information to it, and do so without rules as to quality, and no one is responsible for showing the reader or user how to differentiate. With proper training, the same is not true of public libraries; a well-trained and present staff can make the difference, for using both the local collection and the Internet. The first year of this project has shown that staff consciousness has been raised in respect to choosing quality STEM resources for collection-building and programming, including Summer Reading Club programming. This outcome alone convinces us that we are on the right track with this project.

Our goal for the second year of sponsored training is to expand participation within our District to a broader population of staff members, administrators, and volunteers, including both new and repeat participants. We have also arranged to have at least one participant from a contiguous District attend a training session, with the purpose of possibly expanding the program to her District. Ultimately, depending on outcomes, we imagine at least a statewide presence for STEM training, with goals similar to those of this pilot.

About the Authors

Charles B. Greenberg is retired Corporate Fellow and Manager of Flat Glass New Product Development for PPG Industries, Inc., with expertise in glass, solar control, thin films, switchable materials, and photocatalysis for self-cleaning. He earned a B.S. from Rutgers University and a Ph.D. and M.S. from the University of Illinois, all in Materials Science/Engineering. Since retirement in 2002, he has been dedicated to several special K-12 to senior learning initiatives relating to STEM and has served on various education and library Boards/Councils. For purposes of the present article, he is a Director and Im- mediate Past President of the Murrysville Community Library Board, as well as the Westmoreland Library Network’s Treasurer, Immediate Past President, and representative on the Math & Science Collaborative Steering Council.

Nancy R. Bunt is Program Director of southwestern Pennsylvania’s Math & Science Collaborative, headquartered at the Allegheny Intermediate Unit. She also served concurrently as MSC’s Principal Investigator for a $20 million Southwest Pennsylvania Math Science Partnership funded by the NSF and the PA Dept. of Education. She has led the Collaborative in the coordination of efforts to focus K-16 and informal learning resources on strengthening the teaching and learning of mathematics and science for all 138 K-12 school districts in the 11 counties surrounding and including Pittsburgh. Bunt is a certified teacher and administrator who has worked in urban and suburban settings in Pennsylvania and in Europe. She earned her undergraduate degree from the University of Michigan, and her masters and doctorate from the University of Pittsburgh.

Jamie K. Falo has been Library Director for the Murrysville Community Library in Murrysville, PA since 2011, following nine years as Library Director for the Mount Pleasant Public Library in Mount Pleasant. She earned her B.S. and M.L.I.S. from the University of Pittsburgh. Jamie is an active member of the Pennsylvania Library Association (PaLA), serves in various positions of governance for the Westmoreland Library Network, and serves on the Franklin Regional School District Act 48 Committee. Jamie presented a poster about aspects of this paper at the 2014 PaLA Southwest Regional Summer Reading Club Conference.

Michael Fierle is certified in Secondary Mathematics Education, Supervisory-Mathematics, and K-12 Principal. He completed his undergraduate studies at Indiana University of PA, and then attended the University of Pittsburgh where he earned his M.Ed. by completing the Administrative and Policies Studies program. His teaching experience includes eight years as a middle/ high school mathematics educator in various school systems in PA and VA. As a Mathematics Coordinator with the Math & Science Collaborative for the past ten years, he has provided direct math professional development to school districts and educators throughout southwestern PA, as well as support for regional STEM Professional Learning Communities (PLCs).

Barbara Lease has been in education for 24 years and is currently a Science Coordinator with the Math & Science Collaborative. Barbara earned a B.S. in biology from Allegheny College, did graduate work at the University of Pittsburgh in human genetics, and was certified as a biology teacher through Seton Hill University. Previously, Barbara worked as biology and mathematics instructor for Mater Dei College in Ogdensburg, New York, as a professional development coordinator at the Carnegie Science Center, Pittsburgh, and as a secondary science teacher in the Pittsburgh area’s Penn Hills School District.

Corinne Murawski is a Mathematics Coordinator with the Math & Science Collaborative and a mother of two daughters, ages 4 and 9. Corinne earned her undergraduate degree from Penn State University, and her Masters degree in Education Policy Studies and a K-12 Supervisory Certificate from Duquesne University. Previously, Corinne worked as a district-level administrator for supervision of mathematics/computer science; as a curriculum, textbook, and cognitive tutor developer; and as a classroom teacher in mathematics and science. Corinne has worked with the University of Pittsburgh to supervise pre-service mathematics teachers, and she has also taught undergraduate and graduate courses both face-to-face and online.

Gabriela Rose is a Science Coordinator for the Math & Science Collaborative at the Allegheny Intermediate Unit in Pittsburgh, PA. In this position she is working with science teachers and administrators to implement rigorous inquiry-based science instruction with the goal of preparing all students for college and career in the 21st century. Before coming to the Allegheny Intermediate Unit, Gabriela taught middle school science. Gabriela holds certification for Biology 7–12, Middle Level Science, K-12 Principal, and Supervisor for Curriculum and Instruction. Gabriela earned her undergraduate and graduate degrees in biology and physical education at the Free University of Berlin, and a Master of Science in Ecology from the University of California at Davis.

Cynthia A. Tananis founded the Collaborative for Evaluation and Assessment Capacity in the School of Education at the University of Pittsburgh and serves as its Director and as an Associate Professor in the School Leadership Program. Her expertise focuses on using participative evaluation designs with involved stakeholders, helping people make sense of and benefit from the evaluation process through collaboration, and linking evaluation studies and school reform policy. She holds a B.S. in Education and an Ed.D. in Policy, Planning, and Evaluation Studies, both from the University of Pittsburgh.

Keith Trahan serves as the Assistant Director of CEAC. Keith has been lead evaluator for a variety of programs in the areas of K-12 math and science reform and school leadership, IHE STEM curriculum, instruction, and learning, IHE international education, and community-based human services. He holds a B.A. in Government and a B.A. in Sociology from McNeese State University, an M.A.T. from Charleston Southern University, and a Ph.D. from the Social and Comparative Analysis in Education Program at the University of Pittsburgh.

Dana Winters serves as Senior Evaluator for CEAC. Dana has experience leading evaluations throughout PK-16 formal education, large-scale STEM and literacy reform initiatives, informal education, and community-based non-profit evaluation. Dana has a B.A. in Sociology and Political Science from Saint Vincent College and a M.A. in Student Affairs in Higher Education from Indiana University of Pennsylvania. She is currently a doctoral student in the Social and Comparative Analysis in Education Program at the University of Pittsburgh.

References

CSLP®, Collaborative Summer Reading Club. 2014. “Fizz Boom ReadTM,” http://www.cslpreads.org (accessed October 17, 2014).

Greenberg, C.B., and J. Falo. 2014–15. “CCSS/NGSS Pilot for Summer Reading Club 2014–2015.” Math & Science Collaborative Journal 20: 28–29. http://www.aiu3.net/uploadedFiles/Teaching_and_Learning/ Math_and_Science_Collaborative/2014-2015%20Journal%20(com- plete).pdf (accessed January 14, 2015).

Michaels, Sarah. 2013. “What’s Common Across the Common Core (ELAS and Math) and the Next Generation Science Standards?” Presentation of NSTA WEB Seminars: Live Interactive Learning @ Your Desktop. http://learningcenter.nsta.org/products/sympo- sia_seminars/NGSS/files/ConnectionsBetweenPracticesinNGSS- CommonCoreMathandCommonCoreELA_2-12-2013.pdf (accessed January 14, 2015).

NGSS, Next Generation Science Standards. 2014. http://www. nextgenscience.org/next-generation-science-standards (accessed January 14, 2015).

PA Common Core. 2012. http://www.pa-commoncorestandards.com (accessed January 14, 2015).

Pennsylvania Department of Education. 2012. Office of Commonwealth Libraries. “Library Statistics.” http://www.portal.state.pa.us/portal/ server.pt/community/library_statistics/8696 (accessed January 14, 2015).

Tang, G. 2004. The Grapes of Math. New York: Scholastic Paperbacks. Widener, A. 2014. “A New Standard.” Chemical & Engineering News 92(35): 43–45.

Winters, D.M., and K.T. Wade. 2014. “Librarian/volunteer and Student Surveys for Murrysville Community Library’s CCSS/NGSS Pilot for Summer Reading Club.” Collaboration for Evaluation and Assessment Capacity (CEAC). September Report, School of Education, University of Pittsburgh.

Notes

  • The authors thank the Community Foundation of Westmoreland County (affiliated with The Pittsburgh Foundation) for its lead support in the project. They also are grateful to the following key supporters: the Community Foundation of Murrysville, Export, and Delmont; PPG GIVE Award; the Lulu Pool Trust, managed by First Commonwealth Bank; Lakshmi Gupta.
  • Cole, A. Ruiz, and B. Degen. 1998. The Magic School Bus Plays Ball: A Book About Forces. New York: Scholastic Paperbacks.
  • EIE, Engineering is Elementary. 2014. “The Engineering Design Process.” http://www.eie.org/overview/engineering-design-process (accessed January 14, 2015).

FOSS, Full Option Science System. “Investigation 1: Balance.” http:// www.lyvemedia.com/delta/grade/2/balance_and_motion/investi- gation_1/balancemotion_inv1_background.html (accessed January 14, 2015).

Home Experiments on scifun.org. 2012. “Dancing Raisins.” http:// scifun.chem.wisc.edu/homeexpts/HOMEEXPTS.HTML (accessed January 14, 2015).

ICE, Institute for Chemical Education. 2012. “Is Black Really Black?” and“The Mystery Pen.” http://ice.chem.wisc.edu/SSC/SSC_ Color.pdf (accessed January 14, 2015).

Keeley, P., and J. Tugel. 2009. Uncovering Student Ideas in Science, Volume 4: 25 New Formative Assessment Probes for Grades K-2. Chapter 15. Arlington, VA: NSTA Press.

Keeley, P. 2013. Uncovering Student Ideas in Primary Science, Volume 1: 25 New Formative Assessment Probes for Grades K-2. Chapter 14. Arlington, VA: NSTA Press.

MARS, Mathematics Assessment Resource Service. 2003. “Buttons.” http://www.cfn609.org/uploads/4/6/9/6/4696562/task_-_ buttons_mars2003-05.pdf (accessed January 14, 2015).

Math Solutions. 2009. “Literature-Math Connection—Moira’s Birthday.” http://mathsolutions.com/documents/Moiras_ Birthday_i34.pdf (accessed January 14, 2015).

Munsch, R. 1992. Moira’s Birthday. Toronto: Annick Press.

Project Wet International Foundation. 2009. Discover Floods Educators Guide: 9. “Incredible Journey.” http://www.apfm.info/edu- cation/kids/WET_Discover_Floods_Ed_Guide.pdf (accessed January 14, 2015).

Robertson, W. 2014. “Science 101: What Causes Friction?” Science & Children (May–June). 60–62.

Tang, G. 2004. The Grapes of Math. New York: Scholastic Paperbacks. The Inquiry Project: Seeing the World Through A Scientist’s Eyes. 2011. “What Causes the Water Level to Rise?” http://inquiryproject. terc.edu/curriculum/curriculum4/4_mineralmaterials/inv4_1 (accessed January 14, 2015).

Yang, L. 2007. “A Cool Glass of Water: A Mystery.” http://sciencecases. lib.buffalo.edu/cs/files/melting_ice.pdf (accessed January 14, 2015).

Download (PDF, 849KB)

Flipping an Introductory Science Course Using Emerging Technologies

 

David Green,
University of Miami
Jennifer Sparrow,
Penn State University

Abstract

Today’s faculty members have tools available that enhance the learning experience of modern digital learners. Emerging technologies and innovative teaching practices update the STEM education learning process and facilitate student retention. In today’s hybridized educational world, the classroom stretches far beyond the traditional four walls, and students should be producers of content, rather than merely passive acceptors of information. This article explains how several emerging technologies were implemented and tested in a General Education marine science course for non-majors, describes the role of technologies in “flipping” the classroom, and summarizes student feedback on the learning experience. Using the global marine system and specific case study locations, the course covered major oceanography disciplines, critical environmental issues, and socio-economic conditions of urbanized coastal regions. Environmental sustainability was the integrative theme, highlighting the importance of economic growth while emphasizing that environmental responsibility and social well being must be foregrounded in the context of an exponentially growing human population.

Flipping the classroom using emerging technologies supplemented a rigorous schedule of project-based learning, laboratory activities, field excursions, and civic engagement commitments. Pre- and post- SALG surveys (Student Assessment of Their Learning Gains) were used to gauge student perspectives on the course redesign. They demonstrated improvements in knowledge, skills development, and integration of learning. The combination of activity-based, student-centered learning and emerging technologies make today’s STEM education classroom an exciting, interactive, and engaging experience by giving these sometimes reluctant students the tools they need to succeed in tomorrow’s professional world.

Introduction

A scientifically educated citizenry capable of innovation and leadership is a necessity for a functioning democracy. Many of today’s learners, however, are ambivalent about science and science education, and they lack understanding of how science relates to their daily lives (Burns 2011; Burns 2012; Green 2012). While today’s learners have been surrounded by technologies in the classroom throughout their entire academic journey, many lack the skills necessary to apply their learning and to produce content and are still passive acceptors of information. Educators now have a responsibility and the opportunity to introduce “high-impact educational practices” into curricular redesigns (Kuh 2008). A host of innovative teaching strategies in STEM education have emerged (Springer et al. 1999; Vatovec and Balser 2009; Brown et al. 2010; Prunuske et al. 2012; Green 2012) that can engage reluctant students, increase critical thinking abilities, foster collaborative relationships in the classroom, and enhance communication skills (oral, written, and digital). Matching appropriate emerging technologies with effective teaching practices (Brill and Park 2008) and gathering feedback on these STEM course redesigns is imperative as we continue to enhance our curricula.

With the advance of academic technologies, many educators have embraced the “hybrid” course design (Garrison and Kanuka 2004; McGee and Reis 2012). Hybrid courses (or blended course designs) are those in which a significant amount of quality online content is used to engage students (McGee and Reis 2012) while providing new teaching opportunities for educators (McGee and Diaz 2007; Brown et al. 2010; Green 2012). Modern learners have been called “digital natives,” while today’s educators have been named “digital immigrants,” but that terminology has generated some debate (Prensky 2001a and 2001b; Toledo 2007; Bennett et al. 2008). Although educators and learners may speak different languages in relation to technology and have different comfort levels regarding its use, it is easy to see the potential of hybrid course design for today’s multi-tasking, quick information- seeking, and media-socialized students. Using emerging technologies facilitates activity-based learning and provides students with ownership of the learning environment (Brill and Park 2008; Strayer 2012; Prunuske et al. 2012). Connecting sound pedagogical strategies with suitable technology usage creates a learning environment that matches the needs of modern learners, while providing them with the skills they need to succeed in their professional careers.

Inverting the teaching sequence, or “flipping” the classroom, has gained significant attention in recent years (Lage et al. 2000; Milman 2012; Strayer 2012; Khan 2012; Prober and Khan 2013). Essentially, traditional lecture-type material is provided to students in video or online format before face- to-face sessions. Then, during the face-to-face meetings, students are engaged in social-learning scenarios that promote interactions, engagement, and skills development by applying their knowledge. The role of the instructor changes and, in many ways, resembles an “academic coach” during the learning process rather than an “information presenter.”

Figure 1. A conceptual model of the “flipped classroom” scenario used in the course redesign is depicted. Before attending face-to-face sessions, students are expected to read introductory content, which includes both traditional readings and interactive web-based activities. During face-to-face class sessions, students engage in learner-centered approaches, including activity-based labs and experiential learning opportunities. By implementing combinations of project-based learning, case study analyses, and civic engagement strategies, students apply their learning, demonstrate higher-order thinking skills, and produce content that ultimately benefits the needs of the regional community.

Figure 1 outlines the course design conceptual model used in this curriculum redesign, which employed web-based reusable learning objects that students used before class sessions, so that experiential and activity-based learning activities could be conducted during face-to-face sessions. Reflective exercises and activities, like project-based and service-learning activities, are high-impact learning opportunities that promote academic responsibility and civic engagement. Using emerging technologies to “flip the course” provided the curricular flexibility to implement these innovative teaching strategies. “Marine Systems” is an introductory general education science course for non-science majors that has traditionally been taught as a lecture-based course with embedded laboratory exercises. This paper describes a curriculum redesign that used a“flipped” course model, learner-centered approaches, and embedded service-learning opportunities, and it provides student perspectives on the learning process. The use of emerging technologies in the curriculum facilitated the course delivery, so that students developed an understanding of ecology and its relevance to their daily lives, increasing their civic engagement and awareness (fig. 2).

Figure 2. By using emerging technologies to facilitate the learning process, students gain an ecological perspective related to the marine science concepts they are introduced to. This helps them retain information and connect it to their daily lives, and, following successful completion of the course and civic engagement activities, they leave as engaged citizens.

The primary goals of this course redesign were

  1. To enhance the educational experiences of non-major science students by engaging in learner-centered approaches and web-based techniques;
  2. To demonstrate the potential pedagogical benefits of coupling emerging technologies with innovative teaching practices in a STEM education setting;
  3. To assess student perspectives of their learning gains related to their adoption of emerging technology in a “flipped classroom” scenario.

Methods

The course redesign began by linking course objectives and learning outcomes to a “Guiding Question” which reads:

“Given the current degree of human impacts on the marine world, how can tomorrow’s generations of all inhabitants continue to benefit from the natural goods and services a healthy marine system provides, if we better understand our role as citizens today?”

From this follows the “Primary Course Objective” for this course:

“Students will be able to positively influence both southwest Florida and global communities in mak- ing evidence-based decisions regarding human use and impacts of coastal and marine areas / resources.”

Lastly, the specific learning outcomes and skills development objectives are

  1. To enhance baseline scientific knowledge relating to marine systems and global sustainability by developing critical thinking skills;
  2. To gain an understanding of the ecology of regional ecosystems, the natural goods and services provided by these ecosystems, and how human interactions disrupt natural functions;

To introduce the concept of environmental sustainability and provide opportunities for students to apply this concept to practical real-life situations in an urbanized society.

Learner-centered Approaches

A variety of learner-centered approaches (experiential learning and project-based learning) were used to enhance student practice, learning, and contributions to the learning environment (fig. 3). Combinations of classroom and field-based learning exercises were used to describe the scientific method, to help explain key oceanographic concepts, and to provide encounters with local estuarine ecosystems. Students were given ownership of academic exercises, while the instructor facilitated, guided, and reinforced crucial learning content. Table 1 explains the calendar of individual learning modules with associated major academic themes and objectives. Multiple sources of information including the textbook, scientific journal articles, lab exercises, and personal observations were used. The textbook provided background information, while journal articles examined current issues and explored topics such as ocean acidification, human impacts, overexploitation of marine resources, and global climate change. Learner-centered laboratory exercises applied textbook concepts and provided a collaborative, activity-based learning environment. A reflective journal provided opportunities for student observations and personal reflections on the learning process. Field excursions engaged student interest by exploring coastal ecosystems and assisted with the understanding of ecosystem structure and function, coastal development, and marine research. The capstone project reinforced all class activities by relating environmental sustainability to the socio-economic and environmental issues previously explored. Civic engagement opportunities helped students leave the course as engaged citizens who are willing to apply their knowledge to meaningful projects that benefit our local informal science education partners.

Figure 3. Mapping teaching strategies used within the course design to student practice, learning, and contributions to the learning environment.

Virtual “Oceanographic Research Cruise” Capstone Project

Teams of students“virtually participate” in an oceanographic research expedition that visits a particular location of geological importance on the planet. The task reads: “You have been assigned positions aboard an oceanographic vessel exploring the far reaches of the planet! Your crew will arrive at a marine destination to use as your case study. At this location, your crew will explore and research the factors shaping the region as related to the information you learn in this class. At the end of your ‘research cruise,’ crews will present at our ‘Oceanographic Exploration and Research Collection Symposium!’ Collectively, we will explore the globe in its entirety, learning about the marine systems worldwide! You will incorporate concepts related to physical and chemical oceanography, marine geology, and marine ecology into your learning adventure!” The final project is submitted via a student-created webpage that summarizes the team’s virtual research expedition. The primary intention is to apply course content and learning in a social setting to a specific location that is unique to each team of students.

Ecosystems Visit Field Study and Formal Lab Report

In class, small groups of students chose a theme to investigate for a field research project. At this point, students brainstormed the parameters of the theme and arrived at a research question, formulating a testable hypothesis and designing an experiment to test their hypothesis. The instructor facilitated discussions and helped students choose gear that was needed for the field studies. Each student group created their own study and all groups worked their way through the scientific method during this project. At a field location, students collected their data and replicated their studies in multiple locations. Students created a formal lab report (complete with Excel graphs, figures, and tables) that summarized their research. Major academic concepts covered in this project included

  1. Natural Goods and Services
  2. Ecosystem Structure and Function
  3. Water Quality
  4. Limiting Factors
  5. Beach Profiles
  6. Flora and Fauna Analyses
  7. Estuarine Ecosystems Ecology
  8. Intertidal Zone, Beaches, and Dunes Evaluation
  9. Coastal Urbanization and Habitat Loss
  10. Environmental Sustainability
  11. Land Ethic and Wilderness Values
  12. Marine Conservation

Students were given ownership of this exercise from start to finish, and they explored the natural world the way a scientist would by applying their previous learning to real-world research opportunities.

Human Impacts Project

Breakout groups were formed, and each group was assigned a topic related to a human impact on the marine environment. Phase I (“Background Explorations—A Literature Scavenger Hunt”) included a literature review, where each group located peer-reviewed journal articles related to their topic. From this research, the breakout group synthesized a definition of the impact, explained why it is a problem in the context of an exponentially-growing human population, and described how future decisions should be made differently to improve the situation related to the negative human impact. During Phase II of the project (“From Jigsaw to Podcast”), new groups were formed so that each new group contained students who researched a different human impact during the first phase (similar to a “jigsaw” method of teaching). Students now assumed the role of “expert” for their original topic and they had to teach the new group about that human impact. Once the students had explained their synthesis from Phase I, the new group created an educational podcast script that was three minutes in length and appropriate for an audience of middle-school-aged children. To create the script, students had to summarize all of the human impact topics represented in their new group by answering the following questions:

  1. What is the size of the current human population and what is meant by exponential population growth?
  2. What are examples of modern-day human influences on the marine world?
  3. How and why are these human impacts a problem for the marine world under the context of an exponentially growing human population?
  4. Explain what humans can do differently in regard to future decisions made about ocean impacts.

This project helps students critically examine scientific research, use higher-order thinking skills, and produce educational content for a younger generation.

High-impact Learning Opportunities: Service-learning Projects and Civic Engagement

Partnering with regional informal science education centers, students assisted with tasks that met community needs by participating in field-based service-learning projects. These projects allowed students the opportunity to visualize previous human impacts on coastal ecosystems and mitigate the damage. Using “prompt” questions, students reflected on their experience in a written deliverable that connected their service-learning experiences to their learning in the course and personal development.   In previous iterations, students also delivered oral presentations with the regional partners in attendance. Serving the needs of the community and learning how to take a leadership role in civic engagement are the primary goals of this high-impact project.

Matching Emerging Technologies to Course Outcomes

A main focus of this course redesign was to match the use of appropriate technologies with non-traditional pedagogical strategies (table 2). Careful thought was given to the choice of technology in the course delivery and to desired outcomes. A description of the chosen technologies follows.

Reusable Learning Objects (RLOs): Traditional lecture sessions were replaced with web-based digital Reusable Learning Objects (RLO’s) that were created by the instructor. These highly-interactive presentations with audio, animated figures, text, pictures, and illustrations supplemented the curriculum and enhanced the experience of students by providing an interactive learning environment with real-time assessment and feedback.

GIS Mapping Software: A variety of Geographic Information Systems (GIS)-based learning opportunities were embedded within the course design. Students interpreted patterns they observed and improved their spatial analysis skills. They created their own maps of coastal ecosystems and water quality summaries by using handheld Global Positioning System (GPS) receivers and cloud-based GIS mapping software.

Podcasting: A podcast is an audio or video file that is broadcast over the internet. Following in-depth research on human impacts on the marine world, students created three-minute educational podcasts that are sharable with a younger audience.

Web 2.0 Tools (Weebly, Prezi, Blogs, etc.): Students used free Web 2.0 tools to create their own presentations and webpages. Using these tools, students went from passive acceptors of knowledge to active producers of learning content, which helped them utilize higher-order thinking skills.

Online Database Literature Searches: Students are expected to evaluate evidence and find reputable sources of scientific information. Peer-reviewed literature database searches were required throughout the course and exposed students to discipline-appropriate writing styles and the importance of the peer-review process.

TwitterTM Discussions: TwitterTM is a social networking system designed for quick comments and interactions. Students engaged in out-of-classroom discussions that followed face-to-face sessions and introduced upcoming class topics.

eTexts, Smartphones, and Tablet Computers: A variety of hardware choices by students facilitated the learning process. Our classroom was not conceptualized as a four-walled room with desks, but instead reached far beyond the traditional setup and allowed for real-time explorations of internet content and just-in-time teaching moments related to current events. While all course components are currently available for use on a tablet or computer via the learning management system, not all students own such a device, and any hardware choice by the student was acceptable.

SALG Survey and Data Analysis (Methods)

A Pre- and Post- Student Assessment of Learning Gains (SALG) survey was conducted to gain anonymous student perspectives on the course redesign. Students from single course, in each of two different semesters, was included in this analysis. Surveys included questions related to Knowledge, Skills, and Integration of Learning. Mean scores with Standard Errors were calculated for each question and compared across semesters. Table 3 displays the questions used in the SALG surveys. Because students withdraw from classes during the semester, the pre- and post- surveys have slightly different sample sizes. Results from the SALG surveys allowed for omnibus comparisons and cross-semester evaluations. Students were given an opportunity for free-write responses, as well, though those comments are not included in this manuscript.

Results

During the Fall 2011 semester, 77% of students self-reported GPA’s > 3.01 and 92% stated they were non-science majors (nFall 2011 Pre: 69; nFall 2011 Post: 59). During the Spring 2012 semester, 52% of students self-reported GPA’s > 3.01 and 95% stated they were non-science majors (nSpring2012 Pre: 60; n  t: 58).

Students responded to questions designed to measure their own perception of their understanding of core academic content (table 3—“Understanding” section). Across semesters, similar trends emerged. Students entered the course at or near the “Somewhat” comfortable level with their understanding of core academic concepts in all measured categories; students in both classes left the course feeling “A Lot” to “A Great Deal” more comfortable with their own understanding of core academic concepts (fig. 4). Students responded to questions designed to measure their own assessment of “Skills Development” (table 3—“Skills” section). Across semesters the data indicated that students entered the course at or near the “Somewhat” comfortable level with their perceptions of skills development; students in both classes left the course feeling “A Lot” to “A Great Deal” more comfortable with their own perceptions of skills development (fig 5). One specific skill (“Work Effectively with Others”) displayed no change in the pre- and post- surveys in either the Fall 2011 or Spring 2012 semesters (fig. 5).

Figure 4. Pre- and Post-SALG survey results from two semesters comparing “Understanding of Core Academic Concepts.” Question numbers on the x-axis can be cross-referenced with the actual questions in Table 3. Students responded with a 1-6 score, as illustrated on the y-axis (1=N/A; 2=Not at All; 3=Just a Little; 4=Somewhat; 5=A Lot; 6=A Great Deal). Mean and SE are reported.
Figure 5. Pre- and Post-SALG survey results from two semesters comparing “Skills Development.” Question numbers on the x-axis can be cross-referenced with the actual questions in Table 3. Students responded with a 1-6 score, as illustrated on the y-axis (1=N/A; 2=Not at All; 3=Just a Little; 4=Somewhat; 5=A Lot; 6=A Great Deal). Mean and SE are reported.

Embedded within this course were opportunities for civic engagement, GIS exercises to enhance geospatial analysis skills, and collaborative learning experiences for students. The omnibus dataset (table 3) reveals that students showed a strong increase in their understanding of how civic engagement activities help connect course content to real-world scenarios (MeanPre = 4.160 vs. MeanPost = 5.250).

GIS and geoliteracy skills were enhanced as students demonstrated a strengthened skillset related to their abilities to interpret GIS images to identify patterns (MeanPre = 2.879 vs. MeanPost = 4.448). Student attitudes remained neutral toward activity-based learning (MeanPre = 4.821 vs. MeanPost = 4.800). However, student perspective related to project- based learning displayed an increase (MeanPre = 4.353 vs. MeanPost = 4.650).

Figure 6. Pre- and Post-SALG survey results from two semesters comparing “Integration of Learning.” Question numbers on the x-axis can be cross-referenced with the actual questions in Table 3. Students responded with a 1-6 score, as illustrated on the y-axis (1=N/A; 2=Not at All; 3=Just a Little; 4=Somewhat; 5=A Lot; 6=A Great Deal). Mean and SE are reported.

Helping students integrate their new knowledge is an important goal in a general education course and is a key factor in matching teaching strategies to student practice, learning, and contributions to the learning environment (fig. 3). Students were asked if they were in the habit of connecting key ideas they learn in their classes with other knowledge, of applying what they learn in classes to other situations, of using systematic reasoning in their approach to problems, and of using a critical approach to analyzing data and arguments in their daily lives (table 3—“Integration of Learning” section). Learner perspectives showed an increase in each of these four categories related to the student integration of learning (fig. 6 and table 3 – “Integration of Learning” section).

Discussion

Spatially and technologically, tomorrow’s classroom will be very different from today’s, and the academic tools used in it may not yet even exist (McGee and Diaz 2007; Green 2012; Bolduc-Simpson and Simpson 2012). Yet we currently have many opportunities to engage modern learners with a variety of innovative strategies (Kuh 2008) and learner-friendly technological devices. We must continue to evaluate and assess the incorporation of emerging technologies into curricula redesigns, to ensure their academic soundness and their effectiveness in increasing student engagement. Entry-level STEM courses, like the one described in this article, provide us with the opportunity to transform the science education experience for reluctant learners (Green 2012).

Brundiers et al. (2010) stated the importance of embedding “real-world learning opportunities” into general education courses with an environmental sustainability focus. Overall, students responded favorably to project-based learning in this course redesign. When performing their own assessments, students clearly indicated an increased confidence in their learning gains. Increased skills development (critical thinking, communication, collaborative learning, and social interactions), which contributes to career and professional readiness, was demonstrated, as was an increase in integrating course content by connecting information gained in this course to other knowledge. Likewise, students perceived an increase in their ability to connect their knowledge gains from this class to other situations. In using the scientific method as a guide, students verified that they now are beginning to use systematic reasoning in their approaches to problem solving. Consistent with previous studies, students associated with this course redesign began to understand how civic engagement activities help connect course content to real-world scenarios that made course material relevant to them (Jacoby 2009; Green 2012).

While this course redesign was successful in many ways, it is important to recognize that not every student responds favorably to an inverted classroom design supported by technology. Most students are accustomed to note-taking during a traditional lecture, and any alteration to this structure makes some students uncomfortable. While these changes may not excite a student (as indicated in SALG Attitudes question about activity-based learning), other data presented in this paper show that learning did indeed take place. It is equally important to recognize that not all students learn in the same way, and some may not respond positively to non-traditional teaching strategies. This, however, is true of any teaching method, and it remains the responsibility of the instructor to adjust, assist, and guide each individual learner in the classroom, as needed. The instructor must also remember that learning happens at different paces, and that some students respond slowly to independent learning strategies that differ from their traditional classroom experiences, especially if they lack self-motivation. There are access issues with technology that must be understood by the instructor (i.e. costs, lack of ownership, etc.). Some students lack digital skills, and we must not assume that all have the same knowledge and experience when it comes to using digital tools, software, and hardware. Indeed, Toledo (2007) states that not all students are interested in a technologically-immersed learning environment, regardless of age or exposure. While the challenges listed here are not prohibitive, they must be understood for a successful course redesign aimed at increasing student engagement in the learning process.

In this study, emerging technologies proved to be an effective complement to the curriculum. Student responses generally showed an increase in learning and an increased confidence in subject matter as a result of the flipped classroom model that used emerging technologies as a teaching supplement. Classrooms tended to be lively, with animated students who were actively producing content. This is a much different scene from a traditional classroom with slideshows, dimmed lights, and quiet students taking notes. Thanks to the increased opportunities for one-on-one interactions during the face-to-face class time, struggling students were identified early in the learning process and assisted with their skills development and knowledge gains. This is consistent with Prunuske et al. (2012), who stated that they were able to spend more classroom time assisting students with higher- order learning development.

Using an inverted classroom delivery model required that the role of the instructor be modified into that of an academic facilitator, one who actively guides, rather than one who spouts information from the front of the room. Because self-motivated students were essential to the success of the course, there were challenges. “Borderline chaos” was tolerated in this active-learning scenario, yet the student energy was harnessed and used in a positive manner. Typically, breakout groups of students worked independently while the instructor circulated through the classroom. As a result, there was less reliance on slideshows and formal lectures. Instead, discussions, interactive exercises, and activity-based learning opportunities were emphasized, to promote student engagement and concept retention. Students must still be provided with proper guidance that includes “cognitive presence, teacher presence, and social presence” (Garrison and Cleveland-Innes 2005). Extra time and care should be given by the instructor to explain the new teaching methods, why they are important to the students, and what the learning outcomes are. Innovative teaching methods aside, best practices in teaching must be continued, which means that, regardless of pedagogical strategies, traditional study skills still need to be emphasized for proper learner development. (Brill and Park 2008; McGee and Reis 2012).

Many students have some underlying interest in the course on the first day, yet these same students may have had earlier experiences in science classes that alienated them. Some arrive with preconceived notions about what science is and isn’t. This interrupts their learning until the instructor can find ways to break through these barriers and reach the learner. Connecting textbook material with real world scenarios, case studies, and interactive exercises promotes stronger interest in the learning process and provides students with ownership of the class. Service-learning projects make students feel a sense of pride and accomplishment by directly serving the needs of regional organizations. Reaching reluctant learners and exciting them about science is an embraceable challenge that can be accomplished through the right mix of teaching methods and curricula design (Strayer 2012).

Learner-centered approaches to teaching were employed that relied upon innovative web-based techniques. By matching appropriate emerging technologies with learning outcomes in a STEM education classroom for non-science majors, reluctant students were reached and excited; these students were able to connect course content to other classes and to their daily lives, making their experience relevant and worthwhile. Gaining insight from students about the academic experience by understanding their perspectives is important as faculty experiment with new teaching strategies. To promote best practices in teaching, assessing learning gains and demonstrating student successes is an important follow-up for faculty members who experiment with non-traditional teaching methods and approaches. The incorporation of emerging technology into the course redesign allowed students to engage in a variety of learner-centered approaches designed to increase their knowledge, skills, and integration of learning. While students were neutral in their feelings toward activity-based learning, they displayed an increase in their enthusiasm toward project-based learning, which indicates that a successful social and collaborative learning environment was established with this course redesign. Student spatial skills were enhanced through the use of GIS mapping exercises and academic content was connected to their daily lives via a service-learning project at a coastal salt marsh, indicating student uses of higher-order thinking skills (Bloom 1956; Fink 2003). Our current students are our future decision-makers and leaders. It is vital to give them the tools they need to be well-rounded professionals who are educated and technologically advanced, and who approach their lives with ecological perspectives. As faculty members, it is our responsibility to ensure the teaching strategies we employ are as advanced and innovative as possible. Taking the time to understand the student perspective on innovative course redesigns can enable us to enhance the learning environment for all and might just help us save some of those reluctant science students.

Acknowledgements

A SENCER Post-Institute Implementation Award and an FGCU General Education Council Course Redesign Faculty Award helped fund this project. The authors wish to thank Douglas Spencer, Jessica Rhea, Mike Savarese, Donna Henry, Elspeth McCulloch, Aswani Volety, and the “ Tablet Computer Teaching Cell” at FGCU. Terry Cain, Lee County Parks and Recreation, and the Conservation 2020 Program assisted with civic engagement projects and field excursion logistics. Finally, many thanks to the “Students-as-Partners” who make this work possible and worthwhile! This study was completed at Florida Gulf Coast University before the lead author moved to the University of Miami.

About the Authors

David Green is an Instructional Designer for the Academic Technologies department at the University of Miami, where he is responsible for consulting with, guiding, and supporting faculty in the design and delivery of technology-enhanced courses and co-curricular activities. He is responsible for helping to design, develop, and implement the “Cane Academy,” which is a new initiative at the UM Miller School of Medicine to “flip the classroom” using short instructional videos coupled with companion assessment exercises. As a SENCER Leadership Fellow, he authored a SENCER   Model   Course   and has retrofit multiple university-level classes using the SENCER approach to pedagogy, assessed student response and engagement to the course redesigns, and helped recruit new faculty members to the program.

Jennifer Sparrow is the Senior Director for Teaching and Learning Technology (TLT) at Penn State University. TLT works to help PSU faculty take advantage of information technology to enrich the educational experiences of their students and to champion the creative and innovative uses of technology for teaching, learning, and research. She was previously Senior Director of Networked Knowledge Ventures and Emerging Technologies at Virginia Tech. For more than 15 years, she has championed the use of technology to engage students in the learning process. She has a passion for working with faculty to explore new technologies and their potential implementations in teaching and learning. She loves working with faculty who are willing to push the boundaries of the leading edge of technology in teaching, learning, and research. Her current projects involve the convergence of technologies and learning spaces to create interactive and engaged learning opportunities. Jennifer’s conversations around technology focus on increasing digital fluency for students, faculty, and life-long learners.

References

Bennett, S., K. Maton, and L. Kervin. 2008. “The ‘Digital Natives’ Debate: A Critical Review of the Evidence.” British Journal of Educational Technology 39 (5): 775–786.

Bloom B.S. 1956. Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain. New York: David McKay Co., Inc.

Bolduc-Simpson, S., and M. Simpson. 2012. “Social Places in Virtual Spaces: Creating a Social Learning Community in Online Courses.” Distance Learning for Educators, Trainers, and Leaders 9 (3): 33–42.

Brill, J.M., and Y. Park. 2008. “Facilitating Engaged Learning in the Interac-tion Age: Taking a Pedagogically-disciplined Approach to Innovation with Emergent Technologies.” International Journal of Teaching and Learning in Higher Education 20 (1): 70–78.

Brown, M., M. Auslander, K. Gredone, D.P.J. Green, B. Hull, and W. Jacobs. 2010. “A Dialogue for Engagement.” EDUCAUSE Review 45 (5): 38–56.

Brundiers, K., A. Wiek, and C.L. Redman. 2010. “Real-world Learning Opportunities in Sustainability: From Classroom into the Real World.” International Journal of Sustainability in Higher Education 11 (4): 308–324.

Burns, W.D. 2011. “But You Needed Me: Reflections on the Premises, Purposes, Lessons Learned, and Ethos of SENCER—Part 1.” Science Education and Civic Engagement: An International Journal 3 (2): 5–12.

———. 2012. “But You Needed Me: Reflections on the Premises, Pur- poses, Lessons Learned, and Ethos of SENCER—Part 2.” Science Education and Civic Engagement: An International Journal 4 (1): 6–13.

Fink, L.D. 2003. Creating Significant Learning Experiences. San Francisco: Jossey Bass.

Garrison, D.R., and H. Kanuka. 2004. “Blended Learning: Uncovering Its Transformative Potential in Higher Education.” Internet and Higher Education 7 (2): 95–105.

Garrison, D.R., and M. Cleveland-Innes. 2005. “Facilitating Cognitive Presence in Online Learning: Interaction Is Not Enough.” The American Journal of Distance Education 19 (3): 133–148.

Green, D.P.J. 2012. “Using Emerging Technologies To Facilitate Science Learning and Civic Engagement.” Science Education and Civic Engagement: An International Journal 4 (2): 18–33.

Jacoby, B. 2009. Civic Engagement in Higher Education: Concepts and Practices. San Francisco: Jossey-Bass.

Khan S. 2012. The One World School House: Education Reimagined. New York: Twelve.

Kuh, G.D. 2008. High Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. Washington, D.C.: Association of American Colleges and Universities.

Lage, M.J., G.J. Platt, and M. Treglia. 2000. “Inverting the Classroom: A Gateway to Creating an Inclusive Learning Environment.” The Journal of Economic Education 31 (1): 30–43.

McGee, P., and V. Diaz. 2007. “Wikis and Podcasts and Blogs! Oh My! What Is a Faculty Member Supposed To Do?” EDUCAUSE Review 42 (5): 28–40.

McGee, P., and A. Reis. 2012. “Blended Course Design: A Synthesis of Best Practices.” Journal of Asynchronous Learning Networks 16 (4): 7–22.

Milman, N.B. 2012. The Flipped Classroom Strategy: What Is It and How Can It Be Used?” Distance Learning for Educators, Trainers, and Leaders 9 (3): 85–87.

Prensky, M. 2001a. “Digital Natives, Digital Immigrants Part 1.” On the Hori¬zon 9 (5): 1–6.

———. 2001b. “Digital Natives, Digital Immigrants Part 2: Do They Really Think Differently?” On the Horizon 9 (6): 1–6.

Prober, C.G., and S. Khan. 2013. “Medical Education Reimagined: A Call to Action.” Academic Medicine 88 (10): 1407–1410.

Prunuske, A.J., J. Batzli, E. Howell, and S. Miller. 2012. “Using Online Lectures To Make Time for Active Learning.” Genetics Education 192: 67–72.

Springer, L., M.E. Stanne, and S.S. Donovan. 1999. “Effects of Small- group Learning on Undergraduates in Science, Mathematics, Engineering, and Technology: A Meta-analysis.” Review of Educational Research 69 (1): 21–51.

Strayer, J.F. 2012. “How Learning in an Inverted Classroom Influences Cooperation, Innovation, and Task Orientation.” Learning Environments Research: An International Journal 15: 171–193.

Toledo, C.A. 2007. “Digital Culture: Immigrants and Tourists Responding to the Natives’ Drumbeat.” International Journal of Teaching and Learning in Higher Education 19 (1): 84–92.

Vatovec, C., and T. Balser. 2009. “Podcasts As Tools in Introductory Environmental Studies.” Journal of Microbiology and Biology Education 10: 19–24.

Download (PDF, 1.68MB)