Pre-Service Teachers’ Acquisition of Content Knowledge, Pedagogical Skills, and Professional Dispositions through Service Learning

Abstract

Teacher candidates seeking a K-6 license took a science methods course during which they participated in focused service learning. Candidates were provided the necessary science content instruction to enable them to write the actual event activities and serve as Event Leaders for the regional Science Olympiad competition. Data related to candidate acquisition of content knowledge, pedagogical skills, and professional dispositions were gathered from candidates’ responses to written reflections and standardized surveys.  It was concluded that through their practical and engaged work participants learned science content and gained pedagogical skills necessary for teaching science.  Further, candidates gained desirable professional dispositions related to such civic engagement elements as developing sustainable partnerships, engaging in mutually beneficial work, and serving a diversity of students.

Introduction

The University of North Carolina Asheville

The University of North Carolina Asheville (UNC Asheville) opened in 1927 as Buncombe County Junior College. The school underwent several name changes, mergers with local governments and school systems, and moves before relocating in 1961 to the present campus. Asheville-Biltmore College joined the UNC system in 1969 as UNC Asheville, with the distinct mission to offer an excellent undergraduate liberal arts education.

UNC Asheville is the only designated undergraduate liberal arts university in the 17-campus UNC system. UNC Asheville is a public State Institution of Higher Education and is classified as a Baccalaureate College of Arts and Sciences by the Carnegie Classification system. UNC Asheville is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools. The university has received national recognition for its Humanities and Undergraduate Research programs. U.S. News & World Report ranks UNC Asheville as one of the top five public liberal arts colleges in its America’s Best Colleges edition and lists the Undergraduate Research Program among “Programs to Look For” along with some of the top research universities in the country. UNC Asheville is consistently rated a “Best Buy” in the Fiske Guide to Colleges. UNC Asheville founded the National Conference on Undergraduate Research more than 25 years ago, and the university emphasizes student participation in faculty-mentored research projects. Additionally, most UNC Asheville students undertake career-related internships, and are supervised by university faculty during their time working in the field. Seventeen percent of UNC Asheville students take advantage of study abroad and study away programs. Finally, many courses and on-campus programs engage students in service projects aimed at improving the quality of life at home and around the world, which is a major focus of the university.

Teacher Licensure at UNC Asheville

The mission of UNC Asheville’s Department of Education is to prepare candidates for a North Carolina Standard Professional I Teaching license with a liberal arts foundation. The Department of Education engages with all departments across campus in the preparation of professional educators; undergraduate candidates major in an academic area specific to their intended licensure area, along with taking additional courses necessary to earn their North Carolina teaching license. Hence, Education is not a major or a minor, but is an area of concentration in addition to the academic major. This structure reflects the liberal arts model. Undergraduate licensure candidates in K–12 and 9–12 areas major directly in their area of specialty (e.g. those seeking K–12 Art licensure major in Art), candidates in 6–9 areas either major directly in their area of specialty or in Psychology, and candidates in K–6 may choose any major. This model necessitates a strong liaison-based partnership between representatives from each of the academic majors and the Department of Education. Post-baccalaureate candidates who have earned the requisite Bachelor’s degree may earn a teaching license by taking the necessary Education courses only, or may take a prescribed set of major courses in addition to their Education courses if they are pursuing licensure in a different area from their undergraduate major. Post-baccalaureate candidates are expected to meet the same program requirements and outcomes as undergraduate candidates. The National Council on Teacher Quality has rated the UNC Asheville Department of Education as a Best Value among North Carolina Colleges of Education, and among the top six teacher preparation programs in the Southeast.

Because UNC Asheville is a liberal arts institution, candidates take Arts and Sciences courses in the departments across campus in which they acquire their content knowledge. Courses taken in the Department of Education are structured to build on this content knowledge in the provision of pedagogical skills. This model is supported by such researchers as Davis and Buttafuso (1994), who provide an historical perspective on the role of small liberal arts colleges and teacher preparation. Their claim is that the type of curricular cooperation that is inherent at liberal arts institutions such as UNC Asheville promotes the development of teachers who are knowledgeable, thoughtful, and reflective.

The schools with which UNC Asheville partners frequently speak to the strength of the liberal arts model. In fact, they claim that the strong content knowledge UNC Asheville teacher licensure graduates possess, coupled with their pedagogical knowledge, puts these graduates at the top of the applicant pool. For all of its strengths and advantages, this liberal arts model does come with limitations. The greatest of these limitations is time in the teacher licensure program.  Because Education is not a major at UNC Asheville, and candidates are taking their major and other content courses in other departments, there are precious few hours in each candidate’s schedule in which Education courses can fit. All programs have been structured so that undergraduate candidates can graduate with their major and licensure in four years of full-time attendance, but the course of study is intense for these candidates. And this means that Education courses must be efficient at all costs. Therefore, the focus of Education courses at UNC Asheville is almost strictly on pedagogy. It is vital, then, for instructors of Education courses to find ways to reinforce, and in some cases even facilitate the learning of, content knowledge that candidates need—even though Education courses are technically not “supposed to” focus on this.

Background

North Carolina Requirements for Teacher Licensure Programs

In 2009, all licensure programs in North Carolina were revised to meet North Carolina Department of Public Instruction (NCDPI) requirements. As part of these requirements, all licensure programs were to develop Evidences to be completed by each teacher licensure candidate and submitted to NCDPI to show candidate attainment and demonstration of competencies that meet six statewide Standards for 21st Century Teaching and Learning. These standards include candidate attainment of content knowledge, pedagogical skills, and professional dispositions with which the Department of Education at UNC Asheville’s Conceptual Framework tenets of Content, Pedagogy, and Professionalism directly align. Following is a summary of the six state-required standards, and the approved Evidences the UNC Asheville Department of Education developed to meet the standards (note that for standards 1 and 4 NCDPI defined a required Evidence for every licensure program in the state)

Breadth of Content Knowledge – All candidates completed at least twenty-four semester hours of coursework relevant to the specialty area from a regionally accredited college or university with a grade of C or better in each of the twenty-four hours in order to be licensed. Additionally, all K–6 and Special Education candidates must have received satisfactory scores on the Praxis II exam in order to be licensed.

Depth of Content Knowledge – Candidates completed a Content Exploration Project. Data from assessment of this project showed candidates’ depth of understanding and application of content knowledge per professional and state standards for the specialty area, and the ability to relate global awareness to the subject.

Pedagogical and Professional Knowledge Skills and Dispositions – Candidates created a three- to five-day integrated thematic teaching Unit Plan. Data from assessment of the unit showed candidates’ ability to design effective classroom instruction based on P–12 professional and state standards, and use of effective pedagogy and research-verified practice.

Pedagogical and Professional Knowledge Skills and Dispositions – All student teachers are evaluated by their supervisor, in consultation with the P–12 clinical faculty member, using the state-required Certification of Teaching Capacity Instrument. All candidates must receive a rating of “Met” on each facet of the instrument on the final evaluation.

Positive Impact on Student Learning – Candidates completed an Impact on Student Learning Project. Data from assessment of this project showed candidates’ impact on P–12 student learning given state P-12 standards.

Leadership and Collaboration – Candidates completed the Professional Development Project: Self, Learner, Community. Data from assessment of this project showed candidates’ ability to demonstrate leadership, collaboration, and professional dispositions per professional and state standards for teacher candidates.

Unit faculty applied common rubrics, also approved by NCDPI, to evaluate candidate products related to Evidences 2, 3, 5, and 6, and all candidates had to score a level 3 or higher on each facet of the assignment rubric.

In 2014, the North Carolina State Board of Education (SBE) adopted a policy requiring that all licensure candidates in every licensure area pass the SBE-approved licensure exam(s) for each initial licensure area. For all licensure areas except K–6 and Special Education, these approved exams were the Praxis II.  For K–6 and Special Education, the SBE adopted a new Pearson Foundations of Reading and General Curriculum Test. The Pearson Test is comprised of a Foundations of Reading subtest; a General Curriculum Mathematics subtest; and a General Curriculum Multi-Subjects subtest consisting of questions pertaining to Language Arts, History and Social Science, and Science and Technology/Engineering. These subtests are all comprised of multiple choice items testing content knowledge in each area. An Integration of Knowledge and Understanding section is also completed by test takers, which includes a few constructed response items to test pedagogical knowledge. For K–6 and Special Education candidates and licensure programs, the new Pearson Test signified a significant change from the previously required Praxis II exam, which almost exclusively tests pedagogical knowledge. The SBE-adopted policy also included the provision that the Evidences required for standards 2 and 3 would be replaced by candidate scores on the SBE-approved licensure exams. Candidates take their licensure exam(s) as one of the final steps to completing their licensure process, after finishing their licensure program.

Purpose for the Study

The aforementioned liberal arts model and changes to licensure exam requirements posed a new challenge regarding the K–6 licensure program at UNC Asheville. Because of the number of areas in which a candidate must be prepared to teach at the K–6 level (Reading, Language Arts, Mathematics, Science, Social Studies, and Health being among the major ones), the K–6 licensure program at UNC Asheville is by far the largest in terms of the number of Education courses required. UNC Asheville K–6 candidates had enjoyed a 100 percent pass rate on the Praxis II for a number of years before the Pearson test was adopted. However, it is important to remember that the Praxis II centered almost solely on pedagogy. The new Pearson test focuses almost solely on content, whereas K–6 courses focused almost solely on pedagogy in direct alignment with former licensure exam requirements and the liberal arts model. To meet the new requirements, faculty in the K–6 program at UNC Asheville began work to structure courses and experiences to ensure that candidates were provided the knowledge necessary to make them successful in their quest for a license and with regard to the competencies required to be effective teachers, while continuing to serve the needs of the public schools and community. This researcher serves as the instructor for the Elementary Science Methods course and worked to structure the course and provide candidates with science-related learning experiences for these reasons. This project grew as a result of this structuring and the desire to determine its impact.

Specific Goals for Candidates, Students, the Community, and University Faculty

The desired outcome of this project was that UNC Asheville K–6 licensure candidates and participating elementary students, as well as the involved UNC Asheville faculty member who is the instructor of EDUC 322, would benefit from this civic engagement project. This would be made possible through the use of effective teaching strategies, including inquiry, discovery learning, questioning strategies, and demonstrations; active reflection on theories of science education and learning, and how they can be utilized in the classroom and beyond; participation in a variety of educational experiences which positively impact the teaching of science; and sharing responsibility within the greater community for and recognizing the value of collaborations on issues of mutual concern, benefit, and accomplishment.

The specific goals related to this project were as follows:

UNC Asheville K–6 licensure candidates will acquire content knowledge necessary for teaching science in their future classrooms.

UNC Asheville K–6 licensure candidates will acquire pedagogical skills necessary for teaching science in their future classrooms.

UNC Asheville K–6 licensure candidates will acquire professional dispositions necessary for being effective teachers in their future classrooms.

Elementary Science Methods Course

All K–6 licensure candidates are required to take EDUC 322 (Inquiry-Based Science Instruction, K–6). Throughout the semester, candidates enrolled in EDUC 322 learn about effective Science, Technology, Engineering, and Mathematics (STEM) teaching methodology, and how these methodologies translate to their teaching of future elementary students about science and the scientific method. The course has a focus on teaching using the 5E Learning Cycle. Great emphasis is placed on inquiry and discovery learning, as candidates in the course are afforded traditional classroom learning in addition to participation in hands-on labs aligned with science strands. Candidates also engage in an inquiry-based micro-teaching experience into which the use of Common Core text exemplars are integrated. Given the liberal arts model, the primary goal of the course is to teach effective methodologies for science education, as science content is taught within the other departments in the university outside of the Department of Education. However, science content knowledge is drawn upon throughout the EDUC 322 course within the context of exploring teaching methodologies.

As part of this instruction and practice, licensure candidates in EDUC 322 participate in field experiences during which they gain additional hands-on experience working with elementary students on the teaching of science. Candidates spend six sessions in an elementary classroom observing and/or assisting the classroom teacher, and in addition, each candidate teaches an inquiry-based lesson on their own. Candidates complete a comprehensive Science Notebook as a reflection on the field experience.

Elementary Science Methods and Service Learning

Perhaps the most significant aspect of the EDUC 322 course is candidates’ focused participation in service learning. Candidates participated in the Asheville City Schools (ACS) Kids Inquiry Conference (KIC) in the Spring 2010, Spring 2011, Fall 2011, Spring 2012, Fall 2012, Spring 2013, and Spring 2014 semesters.  Unfortunately, the event had to be cancelled due to ACS’s focus on Read to Achieve mandates.  Candidates participated in the Elementary Science Olympiad in the Spring 2013, Spring 2014, Spring 2015, Spring 2016, and Spring 2017 semesters.

The KIC was an event unique to Asheville City Schools, and was conceived as an alternative to the traditional Science Fair activity. The instructor of EDUC 322 partnered with the ACS Science Coach to plan and facilitate the KIC. Throughout each semester in which KIC was held, EDUC 322 candidates completed their field experiences in the classrooms of third, fourth, and fifth grade teachers and students who would be participating in KIC. This provided the EDUC 322 candidates with the opportunity to assist students with their projects and guide students as they engaged in the inquiry and discovery learning necessary to complete their projects. To complete their projects, students, usually working in pairs or groups of three, engaged in scientific inquiry focused on student-generated questions that came from their curiosities about the natural world. The teachers and EDUC 322 candidates guided students in generating these questions and led students through the process of making predictions, collecting data, analyzing the data, and drawing conclusions related to these questions. Students then created a visual presentation of their investigation and results, and prepared to discuss these with peers.

After a semester of work, the students were prepared for the KIC. During the KIC, UNC Asheville hosted the students and their teachers in a conference on the UNC Asheville campus.  During the conference, the students presented visual representations of their work, and asked and answered questions from their peers. The EDUC 322 candidates who worked with the participating students and teachers served as conference facilitators. Candidates’ roles as facilitators consisted of keeping time during each presentation, aiding with the discussion by asking questions and offering topics for discussion, and assisting students as they rotated to different tables so they could experience a variety of presentations. The instructor of EDUC 322 supervised and guided the candidates as they completed their work during the semester, and instructed candidates regarding safe and ethical practices for working with students. The instructor of EDUC 322 also served as the conference host and facilitator by coordinating all of the logistics for the conference including room reservations, scheduling, bus parking, and arranging for a campus tour for students. Each conference typically involved approximately 200 elementary students and ten elementary teachers.

Science Olympiad is a national program which engages elementary, middle, and high school students in competitions based on national and state STEM standards. Most competitions are team-based, and all require students to engage in hands-on inquiry science activities. Students choose their preferred event(s) from a list of approximately eighteen, and spend the better part of a school year working on their chosen event(s) with their school’s sponsor teacher and their peers on the Science Olympiad team in order to prepare for the competition.

The instructor of EDUC 322 has partnered with the Regional Director of the Elementary Science Olympiad, who is also a high school science teacher in an area school. At the beginning of each EDUC 322 semester, the Regional Director visits the EDUC 322 class and together she and the EDUC 322 instructor provide a description of and orientation to Science Olympiad. During this orientation, EDUC 322 candidates are provided information about their role related to their participation as event leaders and event writers for the Science Olympiad competition. This information is on topics such as the event code of ethics, event rules, event writing guidelines, event scoring guidelines, and safe and ethical practices regarding working with students.  Throughout the EDUC 322 semesters, candidates work to write their events according to competition standards and under the supervision and guidance of the EDUC 322 instructor. This supervision and guidance involves advising candidates as to the content of their events, providing them with resources to obtain the information necessary to write their events, reviewing and editing their work, assisting them with gaining access to hands-on materials they require to carry out their event, and making copies of student answer sheets and any other written materials needed for events.

EDUC 322 candidates put their knowledge into further practice as they serve as event leaders for the actual Science Olympiad competitions. Event leadership consists of supervising competing students, setting up event materials, and scoring competitors’ products. Candidates are supervised by the EDUC 322 course instructor and the Regional Director at each Science Olympiad event.

Methods

Candidate Written Reflections – KIC

Participating EDUC 322 candidates were required to produce written reflections of their experience working on the KIC project. These reflections were graded as part of the course grade for EDUC 322, and evaluated using a standardized rubric. The prompts provided for reflection were as follows:

Situational Context – List the date(s) during which you served as a facilitator, how many students were at your table during each session, and how many presentations you saw during each session.

Describe – Briefly describe the student presentations for which you served as a facilitator.

Analyze – Discuss the presentations you saw in terms of the relevance of the topics of the investigations carried out, the effectiveness of the presentations, and the quality of the questions asked by peers.

Appraise – Evaluate what you observed as a facilitator. Discuss any problems that occurred and why they occurred, what questions you have about the KIC process, and other topics you find relevant.

Transform – Discuss your involvement in KIC as it relates to your future teaching practice in science. Be sure to answer these questions: What might you do with the knowledge you gained to inform your teaching?  How did what you learned by participating in KIC connect with the topics you learned in our course?

Candidate Written Reflections—Science Olympiad

Participating EDUC 322 candidates were required to produce written reflections of their experience working on the Science Olympiad project. These reflections were graded as part of the course grade for EDUC 322, and evaluated using a standardized rubric. The prompts provided for reflection were as follows:

Situational Context – Name the event you led and the event with which you assisted. Give a two sentence description of each event.

Describe – Describe what you did to prepare the event you led.

Analyze – What was student performance like in the event you led?  What was the range of student performance? What surprised you?

Appraise – Evaluate what you observed as an event leader. Discuss what problems occurred and why they occurred, and what suggestions you have for improving the event you led and the tournament as a whole.

Transform – Discuss your involvement in Science Olympiad as it relates to your future teaching practice in science. Be sure to answer these questions: What might you do with the knowledge you gained to inform your teaching?  How could you implement your own Science Olympiad experience for your students, even if it wasn’t supported in your school or district?

Standardized Science Olympiad Surveys

The standardized surveys used by Science Olympiad as an organization were given to all participating UNC Asheville candidates to gain feedback from them after they served as event leaders, and the results were analyzed. Questions on the survey included the following and were rated by candidates on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree):

I was fully prepared to lead this event.

Tournament director(s) were well organized.

The event rules were clear.

The event site for this event was satisfactory.

I was provided with the materials and resources I requested.

Orientation opportunities were provided to prepare me.

Students were prepared for the event.

The event was inquiry in nature.

Service Learning Survey

A Service Learning Survey was administered to EDUC 322 candidates as both a pre- and post-assessment of the impact of their participation in service learning. Appropriate IRB guidelines for a classroom-based project were followed. Questions included on the survey were as follows and were rated by candidates on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree):

As a result of participation in service learning I am likely to

examine my own cultural experiences

educate myself on multiple perspectives

use reflection to evaluate my current teaching activities

develop lessons that include contributions of all cultures

build on learners’ strengths

teach global awareness

incorporate different points of view in my teaching

create lessons that require student collaborations

incorporate student reflection into lessons

encourage students to change things at school they disagree with

encourage students to change things in the community they disagree with

teach students that they can make a difference

teach students to work for equality for people of different races, cultures, or genders

make students aware of their political or civil rights

teach students that the world outside of school is a good source of curriculum

work to improve collaboration between school and community

seek a leadership role in curriculum development at my school

participate in decision making structures (e.g., school improvement team, district planning team, school board)

seek information (e.g., local, state, or national data) when developing school improvement goals

have an interest in education policy

work to understand community problems

work with someone else to solve a community problem

become regular volunteer for an electoral organization

become a regular volunteer for a non-electoral organization

be an active member in a group or organization

regularly vote

persuade others to vote

contact elected officials

regularly seek “news” (newspaper, radio, news magazine, internet, TV)

Pearson Science and Technology/Engineering Subtest

The standardized Pearson test, composed of a Foundations of Reading subtest; a General Curriculum Mathematics subtest; a General Curriculum Multi-Subjects subtest consisting of multiple choice questions pertaining to Language Arts, History and Social Science, and Science and Technology/Engineering; and an Integration of Knowledge and Understanding section which includes a few constructed response items to test pedagogical knowledge as applied to teaching a concept in a content area, has been taken by all K–6 candidates since the 2013–2014 academic year. Each test taker receives an overall Scale Score, a Sub-Area Performance score for each of the three General Curriculum Multi-Subjects subtests, and a score for the Integration of Knowledge and Understanding section. The Sub-Area Performance scores for the multiple choice items are presented on a scale from 1 to 4 to show how many items test takers answered correctly, as follows:

1-Few or none of the items answered correctly

2-Some of the items answered correctly

3-Many of the items answered correctly

4-Most or all of the items answered correctly

The Integration of Knowledge and Understanding scores for the constructed response items are presented on a scale from 1 to 4 to show the quality of the response by the test takers, as follows:

1-Weak, blank, or unscorable

2-Limited

3-Adequate

4-Thorough

For this study, the Sub-Area Performance scores for the Science and Technology/Engineering subtest and the Integration of Knowledge and Understanding scores were analyzed.

Results

Key Findings:  Candidate Written Reflections – KIC

Participant responses (N=61) to the written reflection related to their participation in the KIC were evaluated to determine the most common themes that emerged in reference to content and pedagogy. An overwhelming number of participants (N=56) indicated that involvement with the KIC provided them with more science content knowledge. In their reflections on the experience they stated such things as, “I believe the presentations were very effective, because I even learned things that I didn’t know before such as Ingles brand bag holds the least amount of weight compared to Best Buy and Wal-Mart…”

Numerous participants (N=50) also noted that their role in the KIC assisted them with learning how students conduct inquiry. Participants’ anecdotal comments, such as the following, demonstrate this learning: “…I feel that the process of going through putting together an experiment, making predictions, implementing the experiment, and then having to present their findings was a good exercise and definitely good practice for further inquiry….”

Finally, a number of participants (N=44) suggested that the KIC process taught them to assist students with communicating in scientific terms and carrying out investigations using technological design. This was exemplified in participant comments such as:

Participating in the KIC conference will be helpful to me as a future science teacher. I was able to see that students as young as eight and nine are able to follow the science process and they can work through a problem efficiently. For some reason, the age of these students compared to their work surprised me. I wasn’t expecting such good quality work and investigations, and I look forward to trying this out in the classroom.

and:

I found that many of the presentations were relevant to a child’s life. Many students asked, “So, why did you do this? How does this affect your life?” The students that tested hair ties said they wanted to know what hair [tie] would be best to wear at the playground. The students who tested the batteries said they wanted to know which one lasted the longest for their camping trip. The topics listed above are far different from the science projects I did in elementary school. The topics are things that really matter to the students. One may say that knowing what frozen pizza has the most cheese is not a relevant topic, but what I saw at conference was that it was sometimes the process more than the content that was effective. The students were really engaging in scientific thinking and solving everyday problems using scientific methods. I have no doubt that the students will be better equipped to solve real life science problems because of the conference.

Key Findings:  Candidate Written Reflections – Science Olympiad

Participant responses (N=44) to the written reflection related to their participation in the Science Olympiad were evaluated to determine the most common themes that emerged in reference to content and pedagogy. Almost all participants (N=36) wrote that they felt confident that they could make a Science Olympiad event for their own class or grade level that could be used as a science teaching experience. In fact, some plans, such as the one provided by the following participant, were very fully developed:

I would implement a science Olympiad in my classroom by grouping students into two or three and assign 3 events for each to compete in. Students can have a choice of course. It would take place during the end of the year as an all-day event after EOG’s as a fun way to end the school year. I could potentially use a designated spot outside for Newton’s Notions and an empty room/space near-by for overflow of activities. Stations would have to be condensed in order to fit inside my one classroom and furniture rearranged or taken out of the room for additional space.  The groups will have time to prepare similar to the real Science Olympiad. I would bring in volunteers to help with the stations (preferably student teachers, NOT PARENTS) and supervise each event. There would be eight different events inside my classroom.  Each event would consist of 3 activities.

Most participants (N=32) said that their participation in Science Olympiad gave them the skills needed for building a classroom science community around the concept of students possessing common scientific knowledge on a variety of topics. Participant reflections demonstrating this include the following:

I think this experience made a definite impact as far as me feeling like a REAL teacher. This experience really made being a teacher as real as possible. By observing what students are able to do and what they cannot do, it also enhanced by awareness of upper-level elementary developmental/thinking and where they are with that.

Many participants (N=30) specified that their involvement in Science Olympiad provided them with ideas centering on multiple means for assessing student knowledge. One participant suggested:

I also can envision possibly using the Science Olympiad as an assessment or testing tool.  Should the Olympiad be used as a testing tool, the individual grades would be graded, but not shared.  The students could be divided into teams of 4 or 5 students before the testing period. Their test scores would be combined to form a team score.  My guess is that this would encourage a higher level of preparation and group study before the test.

Key Findings:  Standardized Science Olympiad Survey

Given the nature of this survey and because of its standardization to serve the needs of the established Science Olympiad program, the results shown in Table 1 do not reveal much in terms of participant (N=44) acquisition of skills related to content, pedagogy, or professional dispositions. The exception is with regard to the first and last items. Participants had to have the appropriate content knowledge in order to create their event and be fully prepared to lead it, and most participants had to study and learn content information in order to do so. Therefore, the fact that the mean rating for the first item was 4.8 was a good indicator that participants gained content knowledge as a result of their participation as Science Olympiad event leaders. The mean rating of 4.7 for the last item was also encouraging, as it suggested that participants understood the nature of inquiry as a result of their role in Science Olympiad.

Key Findings:  Service Learning Survey

Participant responses (N=78) to the Service Learning Survey were evaluated to determine the items for which participants showed the most growth between their pre- and post-service learning participation in reference to professional dispositions. From the results illustrated in Table 2, four topics emerged: as a result of their participation participants indicated they were more likely to educate themselves on multiple perspectives, use reflections to evaluate their current teaching activities, teach students that the world outside of school is a good source of curriculum, and work to improve collaboration between school and community.     

Key Findings:  Pearson Science and Technology/Engineering Subtest and Integration of Knowledge and Understanding Section

The means of participant results on the Pearson Science and Technology/Engineering Subtest were analyzed by year. For 2014–2015 (N=14) the mean was 2.64. For 2015–2016 (N=12) the mean was 3.08. For 2016–2017 (N=8) the mean was 3.25. The means of participant results on the Pearson Integration of Knowledge and Understanding section were also analyzed. For 2014–2015 (N=14) the mean was 1.86. For 2014–2015 (N=12) the mean was 2.58. For 2016–2017 (N=8) the mean was 2.63. In the 2014–2015 testing year, three participants did not pass the General Curriculum Multi-Subjects subtest the first time they took it. For the 2015–2016 and 2016–2017 testing years the same was true for one participant each year. In all of these instances, for purposes of this study, the first testing attempt was used in figuring the means so that the same level of data was used for all participants.

Discussion and Summary

Two of the goals of this project for participating candidates centered on the acquisition of content knowledge and pedagogical skills necessary for teaching science in their future classrooms. The Key Findings show clearly that these goals were achieved, especially when the results from the instruments used to obtain results in this study are considered together.  Specifically, in the Key Findings section above it is stated that the results from the Standardized Science Olympiad Survey as shown in Table 1 do not say much on their own about participant acquisition of skills related to content, pedagogy, or professional dispositions, with the exception of the first and last items.  The results related to the first item on this survey do, on their own, suggest that participant content knowledge was improved by their participation in the Science Olympiad.  The impact of these results is strengthened by participants’ anecdotal comments on the Candidate Written Reflections for the Science Olympiad which include, “I really enjoyed creating my event for the Science Olympiad and I learned a lot about rocks and minerals and became more informed on the information…” and, “I feel like this was a great first time getting to work with older students. I’ve only worked with kindergarteners so far. I felt confident helping the students because I knew what I was talking about, due to my research on the subject….”  The results related to the last item on the Science Olympiad Survey showed that participants understood the nature of inquiry as a result of their role in Science Olympiad.

Participant reflections support this claim.  As one participant stated:

I definitely want to incorporate my event stations into activities that students could do in my future classroom. Rocks and Minerals can be boring for certain students but having activities to incorporate learning makes it more enjoyable for students. After taking several education classes I have learned through myself that hands-on activities give me a better understanding of information and make learning more enjoyable when you are able to be creative through acting and building things. The students really enjoyed looking at the rocks and minerals I had as samples and the students seemed to be very intrigued.

The Pearson test  components, as a standardized and quantitative measure of participant learning, can also be considered in concert with the Standardized Science Olympiad Survey. As can be seen, the means related to the subtests of of science content and pedagogical knowledge increase each testing year. As described in the Background section, the KIC was terminated by ACS after the Spring 2014 semester. Additionally, the Science Olympiad is held only in Spring semesters. EDUC 322 was offered every semester until Spring 2016 and thereafter was offered only in Spring semesters. Therefore, there were some participants who completed their licensure program and the Pearson test in the 2014–2015 and 2015–2016 testing years without having participated in either one of the EDUC 322 service learning activities. All participants who completed their licensure program and the Pearson test in the 2016–2017 testing year participated in at least the Science Olympiad activity. The increased means on the analyzed Pearson test component strengthen the conclusion that participants’ knowledge regarding both content and pedagogy increased, despite the technicality that EDUC 322 is not “supposed to” teach content. It is the assumption of this researcher that this outcome is due to the practical and engaged work in which participants were involved as part of their service learning.

Another project goal centered on the acquisition of professional dispositions candidates will need to be effective teachers in their future classrooms. The definition of professional dispositions has been widely disputed, as there are many dimensions through which the concept can be delineated. The quest to define dispositions dates back to seminal works, such as those completed by Arthur W. Combs in the 1960s, which sought to determine the dispositions that effective teachers must possess (Wasicsko 1977). There is also great deliberation over whether or not dispositions can be taught, or if they are simply acquired (Cummins and Asempapa 2013). Many researchers, such as Combs and Wasicsko, have developed a series of assessment tools related to pre-service teacher professional dispositions. But again, the tools are contested due to their content, purpose, and validity. Given these debates, many teacher education programs such as that at UNC Asheville provide their own definitions of professional dispositions, and seek to combine formal assessment of them through the use of prescribed tools with performance-based assessment as candidates are engaged in authentic experiences. At UNC Asheville, candidates displaying professional dispositions to a satisfactory degree are defined within the following parameters:

Collaborative teachers who demonstrate awareness of and appreciation for the communities in which they teach and who foster mutually beneficial relationships with the community.

Responsible teachers who exemplify the skills, behaviors, dispositions, and responsibilities expected of members of the teaching profession.

Reflective teachers who maintain a commitment to excellence and to the continuous assessment, adaptation, and improvement of the teaching-learning process.

Humane teachers who value the dignity of every individual and foster a supportive climate of intellectual inquiry, passion for learning, and social justice.

The themes that emerged from the Service Learning Survey results, as described in the Key Findings, show that project participants gained knowledge and skills in the area of acquiring desirable professional dispositions, especially when analyzed in conjunction with participant reflections. For example, one participant noted:

This Science Olympiad experience confirms my compassion and love for children and desire for being a teacher even during some crazy days. It also confirms my desire to help them learn and discover new knowledge while becoming confident in their science skills. This learning experience was really cool to be a part of and I felt like I was doing something truly important to further children’s interest in science and education. I am happy and proud to say that I was able to participate in the Science Olympiad and confidently show the work that my fellow peers and I produced for such a well-known competition. I will always reflect on the experience as a future teacher and use it to influence my decisions as a teacher in a positive way.

The supposition of this researcher is that the field work in which participants were engaged, which can actually be defined as service learning, and the specific Service Learning activities in which they participated can set candidates on the path to civic engagement. Specific civic engagement elements that were realized include the fact that sustainable partnerships were developed, the work was mutually beneficial, and candidates learned to serve a diversity of children. Participants were able to realize the potential for forming partnerships to benefit their future classrooms.  One participant’s reflection showed this clearly, as the participant stated:

If implementation of my own Science Olympiad were not supported in my school or district, I could look to the community and to private industry for support. The concept of the Olympiad is valuable to fostering scientific education and to meeting the current and future needs of the world. Science is life and to neglect it in our children’s education and preparation for life is not an option.

In summary, education in Science, Technology, Engineering, and Math (STEM) competencies is a growing area in terms of career and workplace skills. Interest in this area has to be started in elementary schools in order to ensure that students are not only being introduced to science skills but are also actively engaged in scientific processes and engineering design cycles. The KIC and Science Olympiad were designed to support elementary science standards, and to assist teachers in fostering these skills in their students. The involvement of the pre-service teachers who served as participants in this study and created quality, age-appropriate science challenges for students, is helping to achieve these long-term goals for students and support STEM education.

ASCD (formerly the Association for Supervision and Curriculum Development) is one of the most prominent professional associations in the field of Education. ASCD provides resources, training, research, and programs that emphasize transformational leadership, global engagement, poverty and equity, redefining student success, and teaching and learning (ASCD 2016). “The ASCD defines citizenship as a concern for the rights, responsibilities, and tasks associated with governing. It identifies citizenship competencies as an important component of civic responsibility. These competencies include acquiring and using information, assessing involvement, making decisions and judgments, communicating, cooperating, promoting interests, assigning meaning, and applying citizenship competencies to new situations” (Constitutional Rights Foundation 2000, 4). The participants in this study were introduced to this information toward the beginning of the EDUC 322 course. Then, throughout the course, discussions were held and activities were completed related to teaching candidates how educating students in STEM areas as well as helping them understand the ethical use of science and scientific data are contributing to candidates’ and students’ citizenship, civic engagement, and civic responsibility—both through their current engagement with students and schools and in their future teaching careers. All of this discussion and activity completion is grounded in the framework of strategies for effectively teaching a diversity of students in the public school classroom according to STEM education principles. Additionally, the participants in this project were provided with a responsibility to both teach and learn within a service and civically engaging context. As a result, they were able to learn to teach using discovery, while engaging in discovery learning themselves. Given their self-reflections, it is evident that the participants are excited about and prepared for the prospects of related responsibilities in their future teaching. And, given the results of the measure of student learning, each group of participants is entering the classroom more prepared in terms of their content and pedagogical knowledge than the one before it.

About the Author

Kim Brown is an Associate Professor and the Chairperson of the Department of Education at the University of North Carolina Asheville.  Kim teaches numerous licensure courses, including Inquiry-Based Science Instruction for candidates seeking elementary licensure.  For her curricular and service work in this course, Kim was named a University SENCER Fellow.  Kim has been very involved in work related to the University of North Carolina Asheville’s liberal arts model, serving as the chairperson of the university’s Integrative Liberal Studies Oversight Committee and the university’s representative on the state-level General Education Council.  Kim was the university’s recipient of the 2014 Distinguished Service Award.

References

ASCD. 2016. “ASCD.” http://www.ascd.org/Default.aspx (accessed June 8, 2017).

Constitutional Rights Foundation. 2000. “Fostering Civic Responsibility through Service Learning.” Fostering Civic Responsibility 8 (1): 1–15.

Cummins, L., and B. Asempapa. 2013. “Fostering Teacher Candidate Dispositions in Teacher Education Programs.” Journal of the Scholarship of Teaching and Learning 13 (3): 99–119.

Davis, B.M., and D. Buttafuso. 1994. “A Case for the Small Liberal Arts Colleges and the Preparation of Teachers.” Journal of Teacher Education 45 (3): 229–235.

Wasicsko, M.M. 1977. Assessing Educator Dispositions: A Perceptual Psychological Approach. https://coehs.nku.edu/content/dam/coehs/docs/dispositions/resources/Manual103.pdf (accessed December 1, 2016).

Download (PDF, 320KB)

 

Community-Engaged Projects in Operations Research

 

Abstract

Community-engaged learning is not very common in technical fields, but including relevant projects in courses can make it feasible and successful. We present an implementation of an operations research course at a liberal arts college. Working with one of four nonprofit community partners to optimize aspects of their organization, students gained insight into relevant, real-world applications of the field of operations research. By considering many aspects of their solution when presenting it to community partners, students were exposed to some issues facing local nonprofit organizations. We discuss the specific implementation of this course, including both positive learning outcomes and challenging factors.

Introduction

Operations research, a “discipline that deals with the application of advanced analytical methods to help make better decisions” (INFORMS 2017), is used by many organizations. Southwestern University, a small liberal arts college, offers an operations research course cross-listed as business, computer science, and mathematics, which broadens opportunities for students to take computer science courses (Anthony 2012). While civic engagement is popular in colleges, its incorporation into the classroom is less prevalent in STEM disciplines (Butin 2006). Though some computer science courses incorporate community-engaged learning, it frequently occurs in a senior capstone experience (Bloomfield et al. 2014). An interdisciplinary course taken before the senior year can provide more realistic experiences in working with people from different backgrounds. Project-based courses are not uncommon in operations research; colleges are sometimes even paid by outside corporations for such projects (Martonosi 2012).

The operations research course’s popularity and increasing support on campus for community-engaged learning worked synergistically to have projects proposed by local community partners (nonprofit organizations) in 2014. The Southwestern University Office of Civic Engagement (OCE) helped facilitate these projects by aiding in the solicitation of partners, providing continuing education to the faculty member, and providing a student Community-Engaged Learning Teaching Assistant (CELTA), whose duties included serving as a liaison between student groups and community partners. The CELTA was a computer science major who had previously taken courses with the instructor and had worked for the OCE for multiple semesters. Together, the instructor and CELTA investigated the value that students found in the project experience, in terms of both more traditional goals of community-engaged learning and the content typical of an operations research course. In the four projects, students partnered with a hippotherapy organization, a local chamber of commerce, and two units on campus.

Methods, Projects, and Partners

Students engaged in a semester-long team project partnering with local nonprofit organizations to solve a problem in need of optimization. Four student teams, working both in class and on their own time, submitted a proposal, a poster with preliminary results, and a final report including an executive summary and full technical details. They also made a final presentation to classmates, the professor, and their community partners. The course is typically a student’s first introduction to operations research. Thus, students are learning the basics of the field while simultaneously applying the ideas presented in the course to their project with the community partner. Both quantitative and qualitative data were collected from students about their experiences, with approval from the university’s Institutional Review Board. Students were asked identical questions about their attitudes toward community service in general, taken from Bringle’s (2004) The Measure of Service Learning: Research Scales to Assess Student Experiences, before project groups were assigned and at the end of the semester, while final project reports were being prepared. All answers were given on a 1–7 Likert scale of likelihood (extremely unlikely to extremely likely) or agreement (strongly disagree to strongly agree). The qualitative data was collected from multiple sources, including meetings with the instructor and CELTA, peer and self evaluations, final exam questions, and course evaluations.

Two of the community partners came from area nonprofit organizations: Ride On Center for Kids (R.O.C.K.), a hippotherapy organization, and the Greater Leander (Texas) Chamber of Commerce. The other two partners were internal to the university: the Center for Academic Success and Records (CASAR) and the directors of the new incarnation of Paideia, an interdisciplinary curriculum program unique to Southwestern.

R.O.C.K. “provides equine-assisted therapies and activities to children, adults, and veterans with physical, cognitive, and emotional disabilities” (R.O.C.K.). R.O.C.K. aims to serve as many clients as possible while using limited resources (including staff, arena time, and horses) appropriately. Clients’ needs determine whether the therapy sessions are individual or small groups. Students formulated appropriate linear programs for modeling the constraints and objectives, and analyzed the solutions under various assumptions (such as the number of hours a horse can be used each day or week). They recommended that R.O.C.K. alter operating hours to better utilize resources while still serving the same number of clients and prioritize the acquisition of additional horses.

The Leander Chamber of Commerce (LCC) has four membership plans, with different prices and benefits. As a nonprofit, they want to be sustainable while providing value to their members. Students first used linear programming techniques to determine optimal pricing for each of the plans while keeping the same benefits, under the limiting assumption that members would stay on the same plan. They then used knapsack problem techniques to determine the ideal combinations of benefits in the plan that provide the most perceived value to the members for a given cost. As costs and perceived values change and new benefits are considered, LCC can use provided software tools to update offerings.

Currently at Southwestern, academic advisor/advisee assignments are made manually, a time-consuming and suboptimal process. Students worked with the Center for Academic Success and Records to convert their process into a flowchart, assigning measures for compatibility based on stated academic interest and predictors of transitional challenges. The assignment can now be considered as a transportation problem, maximizing the compatibility indicators of the entire incoming class while limiting the number of advisees assigned to any one advisor. The team used a Java program to parse data about students, fed that information to a tool called glpsol within the Gnu Linear Programming Kit (GLPK), to solve the transportation problem, and again used Java to present the output cleanly.

Beginning in Fall 2014, as part of a reconfigured Paideia program, all students are part of an interdisciplinary cluster, making connections across disciplines through a subset of required courses. There are numerous tradeoffs to be considered, for faculty, students, and the university as a whole, when considering the ideal number of clusters, courses, and faculty per cluster. Students developed an Excel tool to model these relationships that will be used by present and future Paideia directors in their decision making. Their recommendation of three new clusters per year provided an ideal balance of number of courses available to students and faculty in the cluster, while allowing for changes in class size in future years.

The creation of groups in a course project often poses an interesting dilemma. Each group had at least one person from each of the three predominant majors represented in the course: computer science, math, and business or economics. For the projects where it was anticipated that higher-level programming languages would be used (as opposed to Excel), multiple computer science majors were assigned. Students were required to complete a questionnaire with questions including their preferences among the projects, their willingness or ability to work with an off-campus partner, and published personality questions in a STEM text (Burger 2008). The instructor and CELTA then assigned groups, based on those responses and their prior experiences in the classroom.

Research on Student Experiences

In the following table, we report some of the statements that most students agreed or strongly agreed with. We also note that most disagreed with the claim “without community service, today’s disadvantaged citizens have no hope.”

Responses to the final survey were largely similar to the preliminary survey with regard to the number of students who felt an outcome was likely or agreed with a statement, but when quantified as described above, many of the averages for each question fell. (Given the small sample size, 21 students, we look more at general trends than actual numbers.) The other statements in Table 1 changed by at most 0.1 points.

The differences in the average responses are small. Students answering less enthusiastically (e.g., “somewhat likely” instead of “likely” or “agree” instead of “strongly agree”) may have felt no differently in the final survey and simply had a hard time discretizing their response. Alternatively, a slight decrease in enthusiasm in final responses may be indicative of end-of-semester fatigue. As students typically did not interact directly with clients of the nonprofit partners, they might not have been able to see the outcomes and benefits of their projects. They might have also recognized that many clients served by their partners are not socio-economically disadvantaged and perhaps not people whom they would see as “in need.”

Since team dynamics can play an important role in the success (or lack thereof) in any group project, students periodically evaluated the contributions of their group members. They rated each group member on a scale of 0 to 4, including themselves, indicating whether they were a team player, the amount of effort put forth, whether they were dependable, their intellectual contribution, and their overall contribution. Student were told that specifics would not be shared with the group members, but the instructor would be speaking with anyone who did not seem to be contributing adequately, in an effort to allow them to improve their performance. Additionally, evaluations would be considered in calculating each student’s participation grade, but except in extreme cases, would not affect the project grades. The provided instructions and reminder that it is highly unlikely that everyone is excellent at everything seemed to lead students to give considered answers. In addition, they wrote a single sentence for each group member (including themselves) about their overall impression of said member’s performance. These comments typically suggested most group members were pulling their weight. Sometimes their disciplinary backgrounds meant they were a stronger contributor in one area than another. For example, a student who had more accounting experience might be especially skilled at reading financial statements and explaining their contents to others who have more programming experience. This exercise, along with in-class discussions, seemed to help mitigate some of the tensions that occasionally arose with the differences between majors/backgrounds.

The final exam included questions eliciting the benefits and drawbacks of having a group project with a community partner. A few students felt the group project prevented them from learning additional course material because of the time devoted to working on the project. However, most enjoyed delving into a large and real problem.  One student noted that “it exposed us to another learning method,” another said through the projects students “saw applications of theory which reinforced the ideas learned in lectures,” and a third indicated that “‘What can I do with this class/theory?’ actually gets answered.” (In accordance with the IRB consent forms, student quotes are not being attributed to specific individuals.) While many people often think of the benefits of operations research first in terms of money (whether increasing profit or cutting costs), the projects helped students focus on other things that can be optimized, as illustrated in this response: “The group projects gave much more of a feel of the complexities of optimizing real world situations, particularly when profit is not the most important quantity to an organization.” Other students talked about the benefits of the project being in the “real world,” and of working in teams similar to their anticipated future work environments. A student summed up much of the motivation for doing the group project with community partners in the observation that “reading case studies or doing fictitious projects does not provide the same sense of urgency and rewards as doing a project for someone who can actually benefit from it.” The student comments echo many of the benefits purported in literature about community-engaged teaching, including deeper understanding of course material and the ability to transfer knowledge (Furco 2010).

Most drawbacks students reported were logistical in nature, either with their group members or community partners. Frequent concerns were difficulty scheduling meetings (with or without the community partner) and having access to information. One indicated that “people bringing different backgrounds was a benefit in tackling our project, but it was hard to balance the work and make sure everyone pulled equal weight,” which led to concerns about receiving a group grade for the project (cumulatively, twenty-five percent of the final course grade). Another stated that community partners “did not fully understand the benefits and applications an OR student can provide” and had nebulous expectations, whether expecting too much or too little. Only a few students indicated a concern that the project resulted in “less time learning concepts with the professor,” and most viewed the experiential learning as likely to be retained longer. Most students indicated a desire to keep this component of the course.

Just as the small sample size limits statistical analysis, the frequency of the course offering (typically once every two or three years) and the varying nature of the projects and partners limit meaningful longitudinal studies. One wonders whether such projects increase student engagement and satisfaction, possibly with positive impacts upon retention and graduation. Anecdotally, all non-visiting students in the course have in fact graduated from Southwestern, but given that the students were typically juniors or seniors, that is unsurprising. Likewise, with the variety of majors enrolled and the differences in the projects, other assessments of impacts on overall academic performance are limited. However, in the future it may be possible to determine whether there is a correlation between students’ performance on exams and the specific skills and techniques used in their projects.

Discussion: CELTA, Community Partner, and Instructor Reflections

Each team met with the CELTA three times. The first meetings were primarily introductory in nature. Each group had held its first meetings with community partners and was involved in initial planning stages. The two groups working with on-campus partners both had a strong start, with detailed plans in place to find their solutions. Likely because of the connection to campus and the professor’s connection to these projects, the expectations were communicated more clearly than those tied to the projects that were based off campus. In contrast, the off-campus partners had more of a vision to be interpreted than a concrete plan to be executed. Though students are often more comfortable with precise directions, the real-world experience of uncertainty and ambiguity is quite valuable.

In the second round of CELTA meetings, group members were still excited but now had some concern about partially completed projects and looming deadlines. The groups had all made substantial progress and were working on posters to be presented at a campus symposium. Three of the four groups were now experiencing more of the challenges of a real-world project, where the scope or goals can change over time. The Academic Advising group felt that some of the partner’s requests were growing beyond the original requirements, but had difficulty scheduling face-to-face meetings to discuss the limitations. The Paideia group had the fewest communication obstacles, likely because the primary contact is a professor in the math department. As such, many group members already had a working relationship with her, and would often drop by her office for immediate feedback.

At this point, groups had already considered the obvious stakeholders, but were now asked to reflect further on the non-obvious stakeholders affected by their project, which can be equally important when modeling problems. The Academic Advising group had identified students and professors as the obvious stakeholders, with counseling services and parents as non-obvious stakeholders; both are concerned with students’ overall well-being and stress levels, which can be impacted by advising. The Paideia group noted students as the obvious stakeholders, and considered professors as non-obvious stakeholders, due to teaching load and leave considerations. The projects with off-campus partners, not surprisingly, had different stakeholders, with interesting implications. The member working with R.O.C.K. identified the horses as a non-obvious stakeholder. While meeting the needs of obvious stakeholders (the clients, and if they are minors, their parents), it is important to ensure that the horses do not get overworked. Accordingly, group members had to familiarize themselves with seemingly restrictive regulations that R.O.C.K. adheres to concerning the number of hours a horse should work per day and needed to incorporate those into their problem formulation and solution. For the LCC, member organizations are obvious stakeholders, and group members identified residents of Leander as non-obvious stakeholders, since each new resident of Leander receives a directory of businesses that are chamber members, and said membership confers certain credibility. In all groups, students realized that projects can have far broader impacts than initially considered.

The final round of CELTA meetings occurred toward the end of the project, while groups were finalizing their linear programs and solutions and writing their final paper. The completed project portfolio was provided to the instructor and the community partner, and each group gave a final presentation to the entire class, inviting their community partners to attend. While not all partners were able to attend, the possibility that the partner would be present ensured that students had to thoroughly motivate the assumptions made for the project and explain why they were reasonable. All groups already had experience presenting as a team from the campus symposium. Additionally, the poster presentations had increased student enthusiasm when they realized how interested their peers and faculty were in their projects. This was especially true for the groups working with on-campus community partners; students and faculty were able to ask specific questions because they were already familiar with Paideia and the Academic Advising process, which alerted members of these groups to issues with their solution that they might not have previously considered. Many group members talked about broader implications of their projects. A Paideia group representative considered optimizing Paideia to be part of the legacy he leaves behind upon graduation. The R.O.C.K. representative appreciated that the project had relevant business applications, and was excited to be able to apply the knowledge learned in the real world. Overall, group members expressed the opinion that it was a positive, albeit challenging, experience.

During the semester, morale was often correlated with the level of engagement of the community partner; groups that maintained good communication with their partner felt more positive about their projects. Communication challenges occurred with both on- and off-campus partners. While the instructor reassured students that projects could earn good grades despite incomplete partner information (with students making reasonable assumptions based on the information they did have), students naturally wanted to deliver products that met their and their community partner’s expectations. Groups that believed their partner would implement the proposed solutions were more satisfied with the experience; yet implementation was not always feasible for the partner. Not surprisingly, when a community partner is more invested in a project, a group often does better work. Accordingly, in future offerings the instructor will have more up-front discussions with both the students and the partners about how to facilitate such communication and commitment.

All community partners gave positive feedback about the work completed by the students. The LCC president has benefitted from the tools (e.g. Excel spreadsheets that are easily updatable without any operations research background), the analysis from students, and recommendations from the group about plan offerings and costs. Likewise, R.O.C.K. appreciated the information and made plans to present it to their board. However, like many nonprofit organizations staffed primarily by part-time employees and volunteers, R.O.C.K. experiences frequent staff turnover; the main project contact left the organization shortly after the project was completed, so follow-up has been limited. Likewise, a new director for the Paideia program was selected from the faculty shortly before the class project was completed; she has since used the spreadsheet and tools created and has given positive feedback.

The tools for assigning advisors to advisees require ongoing updates and maintenance by people with sufficient Java knowledge to reflect annual changes such as the number of advisees an advisor currently has. In addition, since the students who need to be assigned are new each year, there is some data processing involved in converting the information students provide on a web form into the format needed for the Java programs and GLPK. Full implementation has not yet happened for various reasons unrelated to the course, but there is support from CASAR staff for eventual usage, and the instructor is willing to do the updates.

One final exam comment was positive overall about the project, but the student wished that the group had “had more time to do more.” This issue of the semester-long lifetime of the project is an issue the instructor continues to struggle with. While the deliverable at the end of the semester is expected to be useful to the community partner, often some continued involvement with the partner after implementation would be ideal. Some students may be able to continue the partnership as an independent study, allowing the community partners to have the model refined as they realize limitations, whether due to assumptions the students had to make or to factors that were not readily known in the original problem.   

We believe that these projects are in fact rightfully viewed as partnerships, with students acting in a consulting role for the organizations. While there are inherent dangers in community-engaged learning programs that try to “fix” what is “wrong” with a community (Cooks 2004),  the partners themselves responded to offerings of these optimization services, and they chose the problem or issue. And of course they also remain in control of how the resulting information is used. Though the instructor and students did have a role in deciding which projects were selected—which does confer a degree of power (Mitchell 2008)—choices were largely based on suitability of the problem for the course (i.e. an optimization problem, not a website redesign). The concern about developing tools without providing people and resources to maintain them long-term, paralleling the concerns of do-gooders who impose their will on others, is worth acknowledging (Illich 1968). We are up-front with the community partners about the time span and limitations, aim to provide useful tools that are easily modifiable, and typically use software (frequently Excel) that their organization already uses.

Partners greatly valued the community-engaged learning relationships with the university, but, consistent with the literature, logistics (student schedules) and communication issues are not easy to overcome (Vernon and Ward 1999). While partners were invested to some degree in the projects, the projects were not their highest priority (nor were they expected to be). The instructor can be more proactive in future years about outlining the expected time commitments and flexibility needed to both the partners when selecting projects and the students when they register for the course. Having tangible results from the 2014 offering may make it easier to solicit future projects, and partners may be more invested when they have a fuller understanding of expected benefits. 

Conclusion

This Operations Research course was a productive and positive experience for students and community partners alike. Students benefitted from the hands-on project that required them to apply their knowledge outside of the typical classroom, and gained experience working and solving problems in a large group. The Community-Engaged Learning Teaching Assistant and instructor witnessed student learning in and out of the classroom, and they were able to educate students about community-engaged learning in general while further motivating course content. Finally, the community partners each received a solution to a problem from skilled students, which further strengthened the partnership between Southwestern University and the Georgetown community.

The instructor is committed to continue offering this course with nonprofit partners. Since ideally each project ends with a “solved” problem, partners will often differ from year to year, unlike many community-engaged learning courses which are able to work with the same partners for extended periods of time. Yet organizations may have new problems in mind that are in need of optimization, and can be partners in future offerings. Including presentations from community partners early in the semester could be beneficial, since passion about a project often leads to stronger teamwork, dedication, and enthusiasm about the experience. Though there will always be logistical challenges in courses of this nature, offering a community-engaged learning component in an operations research course is a worthwhile endeavor that results in beneficial learning outcomes and hands-on experience for students, and in tangible products for the partners.

Acknowledgments

Thanks to Dr. Sarah Brackmann, Director of Community-Engaged Learning at Southwestern University, and to the community partners and their primary contacts: Bridget Brandt (LCC), Jerry Fye (R.O.C.K.), Dr. Alison Marr (Paideia), and Kim Morter (Center for Academic Success and Records).

About the Authors

Barbara M. Anthony, (anthonyb@southwestern.edu), the instructor for the operations research course, is an Associate Professor of Computer Science at Southwestern University in Georgetown, Texas. She received her PhD in Algorithms, Combinatorics, and Optimization from Carnegie Mellon University in 2008. She is active in the computer science education community, with a particular interest in introducing students from underrepresented groups to the discipline, and finds ways to bring her theoretical computer science interests into multiple courses.

Kathryn M. Reagan, (kathryn.m.reagan@gmail.com), the CELTA for the operations research course, is a class of 2016 graduate of Southwestern University in computer science. She is currently a consultant software developer for ThoughtWorks. Her passions lie in social and economic justice and computer science education, and she loves finding ways to work within the intersection of those passions.

References

Anthony, B. 2012. “Operations Research: Broadening Computer Science in a Liberal Arts College.” Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE ’12): 463–468.

Bloomfield, A., M. Sherriff, and K. Williams. 2014. “A Service Learning Practicum Capstone.” Proceedings of the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14): 265–270.

Bringle, R., and M. Phillips. 2004. The Measure of Service Learning: Research Scales to Assess Student Experiences. Washington, DC: American Psychological Association.

Burger, E. 2008. Extending the Frontiers of Mathematics: Inquiries into Proof and Augmentation. Hoboken, N.J.: Wiley.

Butin, D. 2006. “The Limits of Service-Learning in Higher Education.” The Review of Higher Education 29 (4): 473–498.

Cooks, L., E. Scharrer, and M.C. Paredes. 2004. “Toward a Social Approach to Learning in Community Service Learning.” Michigan Journal of Community Service Learning 10 (2): 44–56.

Furco, A. 2010. “The Engaged Campus: Toward a Comprehensive Approach to Public Engagement.” British Journal of Educational Studies 58 (4): 375–390.

Illich, I. 1968. “To Hell with Good Intentions.” Address, Conference on Inter-American Student Projects (CIASP), Cuernavaca, Mexico, April 20, 1968.

Institute for Operations Research and the Management Sciences [INFORMS]. 2017. “What is Operations Research?” https://informs.org/About-INFORMS/What-is-Operations-Research (accessed May 27, 2017).   

Martonosi, S. 2012. “Project-Based ORMS Education.” In Wiley Encyclopedia of Operations Research and Management Science, J. Cochran, ed. Hoboken, N.J.: John Wiley & Sons.

Mitchell, T.D. 2008. “Traditional vs. Critical Service-Learning: Engaging the Literature to Differentiate Two Models.” Michigan Journal of Community Service Learning 14 (2): 50–65.

R.O.C.K. (Ride On Center for Kids). www.rockride.org (accessed May 27, 2017).

Vernon, A., and K. Ward. 1999. “Campus and Community Partnerships: Assessing Impacts and Strengthening Connections.” Michigan Journal of Community Service Learning 6: 30–37.

Download (PDF, 269KB)

 

A Research Project in Inorganic Chemistry on the Flint Water Crisis

Stephen G. Prilliman, Oklahoma City University

Abstract

Students in an introductory inorganic chemistry course conducted a semester-long literature-based research project on the then-ongoing drinking water crisis in Flint, Michigan, USA. Students presented their findings at a poster session that was open to the public. The implications of choosing an ongoing news story as a focus and the ability for such a project to shape the curriculum in a broad introductory course is discussed.

Introduction

If organic chemistry is the study of carbon, inorganic chemistry is the study of all the other elements on the periodic table. The breadth of possible topics in an undergraduate introductory inorganic chemistry course can thus present a challenge for the instructor. In fact, the topics actually taught in inorganic chemistry vary substantially from one institution to another (Raker et al. 2015). At Oklahoma City University, Inorganic Chemistry is a one-semester, lecture-only course for upper-level chemistry and biochemistry majors. The course covers orbitals, periodic trends, bonding, symmetry, transition metal complexes, acid-base chemistry, redox chemistry, and solid state chemistry.

The addition of a research project with societal implications to this course came about because of the demise of another course. For several years students in our college were required to take a senior seminar in which they would investigate and write policy proposals for problems facing humanity in the 21st century, e.g., pollution or climate change. The course proved difficult to staff, and departments were instead asked to offer upper-level courses with a strong research component. However, this research project, initially an “add-on,” became central to the course experience.

A number of factors made the Flint crisis a good choice for an inorganic chemistry research project, including

  • A sense of immediacy due to the ongoing nature of the crisis
  • Strong curricular overlap
  • Availability of information from journalistic sources
  • Availability of independent data from the Flint Water Study (2016)
  • Strong social justice aspect
  • A story impacting a diverse urban area not unlike our own

Several other recent chemistry-related events were considered, including the explosion at a fertilizer plant in West, Texas (Chemical Safety Board 2015) and the Gold King Mine contaminated water release impacting the Navajo reservation (Environmental Protection Agency 2015), but neither had all of the advantages listed above. Local cases were also considered. The abandoned Tar Creek mine in far northwest Oklahoma (Barringer 2004) lacked the timeliness of Flint, while the recent earthquakes in Oklahoma stemming from wastewater injection at well sites required knowledge deemed to be beyond the scope of the course.

Overview of the Flint Water Crisis

In 2012, the city of Flint began investigating cheaper alternatives to its water purchasing agreement with Detroit. At the time, Flint was under the administration of a state-appointed emergency manager due to ongoing fiscal difficulties. Flint officials decided to join a regional effort to construct a treatment plant on Lake Huron by 2016 with an anticipated savings of $200 million over 25 years (Kennedy 2016). In the interim, the city would  treat its own water from the Flint River beginning in April, 2014. Residents quickly complained of yellow and brown water. The city had trouble regulating, alternately, E. coli bacteria and chlorination by-products. Corrosion found on newly made parts prompted the General Motors engine plant in Flint to discontinue use of city water in October 2014. In January 2015, the first elevated lead levels in drinking water were found. Michigan state officials dismissed independent results showing elevated lead levels until October 2015, when residents were told to stop using Flint city water for drinking, cooking, or bathing. A more thorough overview of the crisis can be found elsewhere (Flint Water Advisory Task Force 2016; Kennedy 2016; Wisely and Erb 2015).

Mechanics of the Project

Students in the inorganic chemistry course were assigned to research and present a poster on some aspect of the Flint water crisis. Learning objectives for the project are listed in Table 1. Posters were chosen as the final research product so that students could present their research in a forum that encouraged community engagement and discussion. A poster session would also give students an authentic experience in explaining their findings to both scientists and non-scientists who might be in attendance.

In the second week of the semester the students read a newspaper article (Wisely and Erb 2015) and a trade journal article (Torrice 2016) in class. Students were given two additional days in class for research and consultation but were mostly expected to complete their research on their own. Halfway through the semester students were required to turn in a summary of their research up to that point.

Results

Students’ topics fell into two broad categories that we referred to as “people” and “pipes.” Most students in the “people” group focused on the mechanism of lead toxicity. Two students examined biological pathways in which lead ions displace calcium ions. Another looked at using the common ligand molecule EDTA as a treatment for acute lead exposure. Those focusing on “pipes” looked at the chlorination byproducts acting as oxidizing agents that converted lead metal to soluble lead ions. Several others focused on whether treating water with phosphates might have prevented pipe corrosion by creating and maintaining a solid layer of iron/lead phosphate on the interior of city and residential pipes.

Each of the thirteen students in the class presented a poster at the end-of-semester poster session (Figure 1). In addition to students, faculty, and staff who attended, a reporter from the local independent weekly newspaper, the Oklahoma Gazette, also attended, resulting in an article in her newspaper (Estes, 2016) and providing students an authentic experience in explaining science to the public.

Discussion

There were two unplanned benefits of this project. First, many of the students addressed the social justice aspect of the crisis. While students had been instructed to be sensitive to the fact that real people were affected, many decided that it was important to discuss the injustice of the situation. One student’s poster prominently displayed a quote by Mayor Dayne Walling declaring the Flint River “good, pure drinking water, and it’s right in our backyard.” Another student expressed to the Oklahoma Gazette reporter her incredulousness upon realizing that city and state officials “were really letting this happen to people.”

Another unplanned benefit was how the project motivated study and reinforced course material. Student research projects discussed redox chemistry, electrochemistry, chelation, and periodicity. This made it easier to motivate students to study these subjects and gave the course a sense of coherence. In this way, the project, which was originally an addition, became a focal point for the entire course. As one student put it, “Once we found the water reports and the results had shown a high chlorine residue, I felt like the chemistry became real for me.”

We missed one opportunity when we failed to reach out to Oklahoma City community members with specialized knowledge in water treatment and water quality to add a local dimension to the project. Although the students showed a remarkable capacity to empathize with the citizens of Flint, a local connection would have added greater relevancy to their research. Providing students a rubric for the poster at the beginning of the semester and additional checkpoints throughout the semester would have ensured that expectations were better understood. A formal method of assessing students’ perception of learning during the project (rather than an assessment for the entire course) should have been established also.

Conclusion

The project, which focused on a current news topic and culminated in a public poster session, presented students with a unique opportunity to experience the need for expert analysis on an ongoing news event. The chemistry was neither simple to understand nor to explain. Students needed to integrate their scientific knowledge with information gleaned from news reports to explain the salient chemistry to both scientists and non-scientists. Students were thus provided with an experience that lies outside the norm of most undergraduate programs and which might not have been possible with a more traditional case study or research project.

Acknowledgements

Thank you to the students of the course for their hard work on their projects and to Rod Jones of the Oklahoma City University Communications and Marketing Department, for inviting the reporter to cover the poster session. Thanks also to Traci Floreani and Joe Meinhart for their work on the original “21st Century Problems” course.

About the Author

Stephen Prilliman, Ph.D., is an associate professor and department chairperson of Chemistry at Oklahoma City University. For the past ten years Stephen has taught both high school and college courses using the POGIL (Process-Oriented Guided Inquiry Learning) method of teaching and is an active participant in the POGIL Project. His research is focused on the development and assessment of inquiry-based activities and labs that address persistent misconceptions.

References

Barringer, F. 2004. “Despite Cleanup at Mine, Dust and Fear Linger.” http://www.nytimes.com/2004/04/12/us/despite-cleanup-at-mine-dust-and-fear-linger.html (accessed December 20, 2016).

Chemical Safety Board. 2015. “West Fertilizer Explosion and Fire.” http://www.csb.gov/west-fertilizer-explosion-and-fire-/ (accessed December 20, 2016).

Environmental Protection Agency. 2015. “Emergency Response to August 2015 Release from Gold King Mine.” https://www.epa.gov/goldkingmine (accessed December 20, 2016).

Estes, L. 2016. “Oklahoma City University Students Research Facets of Water Crisis.” Oklahoma Gazette, May 5, 2016, 4−5.

Flint Water Advisory Task Force. 2016. “Final Report.” http://www.michigan.gov/documents/snyder/FWATF_FINAL_REPORT_21March2016_517805_7.pdf (accessed December 20, 2016).

Flint Water Study. 2016. “Updates.” http://flintwaterstudy.org (accessed December 20, 2016).

Kennedy, M. 2016. “Lead-Laced Water In Flint: A Step-By-Step Look At The Makings Of A Crisis.” http://www.npr.org/sections/thetwo-way/2016/04/20/465545378/lead-laced-water-in-flint-a-step-by-step-look-at-the-makings-of-a-crisis (accessed December 20, 2016).

Raker, J.R., B.A. Reisner, S.R. Smith, J.L. Stewart, J.L. Crane,  L.Pesterfield, and S.G. Sobel. 2015. “Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty.” Journal of Chemical Education 92: 973–979.

Torrice, M. 2016. “How Lead Ended Up in Flint’s Tap Water.” Chemical and Engineering News 94 (7): 26–29.

Wisely, J., and R. Erb. 2015. “Chemical Testing Could Have Predicted Flint’s Water Crisis.” Detroit Free Press, October 11, 2015. http://www.freep.com/story/news/local/michigan/2015/10/10/missed-opportunities-flint-water-crisis/73688428/ (accessed December 20, 2016).

Download (PDF, 580KB)

Winter 2017: From the Editors

We are pleased to announce the Winter 2017 issue of Science Education and Civic Engagement: An International Journal. This issue provides a variety of articles that describe successful strategies for engaging students.

L. Jay Deiner (New York City College of Technology, City University of New York), Gregory Galford (Chatham University), and Nancy Trun (Duquesne University) describe an innovative strategy to assist students to understand complex, multidisciplinary community issues. A partnership between students studying chemistry and those studying interior architecture created a mutually beneficial learning environment in which all students could approach a brownfield redevelopment project from multiple perspectives.

Steve Cohen and Melanie Pivarski (Roosevelt University) partnered with Barbara Gonzáles-Arévalo (Hofstra University) to examine how the integration of projects into a Calculus II course impacted students who were designing the projects and those who were serving as embedded tutors. The authors evaluated the project using surveys, interviews, and classroom observations. Based on these data, they conclude that tutors reported greater confidence in the knowledge and teaching of calculus, whereas project designers gained educational benefits that were similar to those obtained from an undergraduate research experience.

Dan Mushalko (National Public Radio), Johnny DiLoretto (a performer), and Robert E. Pyatt (Nationwide Children’s Hospital and Ohio State University) created a program for informal science education that invites moviegoers to participate in hands-on science activities prior to seeing a newly released film at a not-for-profit movie theater. Their approach has been successful at providing engaging enjoyable science experiences in an unexpected setting.

The water crisis in Flint, Michigan, was widely publicized in the news media. Stephen G. Prilliman (Oklahoma City University) used this incident as the foundation for his upper-level inorganic chemistry course. Students performed literature-based research projects that examined topics ranging from the aqueous chemistry of lead to therapies for treating lead poisoning. The instructor noted that the project was particularly effective at enabling students to make connections among various inorganic chemistry topics, while also prompting them to appreciate the connection between chemistry and an important civic issue.

What type of assessment strategies can be used to gain insight into students’ understanding of a complex scientific concept like an ecosystem? Rob Sanford (University of Maine) has developed an assessment tool that asks students to draw an ecosystem and score the results using a rubric. Comparing students’ ecosystem drawings at the beginning and end of the semester revealed a statistically significant improvement in their understanding of ecosystems processes and interactions.

We wish to thank all the authors for sharing their insightful work with the readers of this journal.

Trace Jordan and Eliza Reilly, Co-Editors-in-Chief

Access individual articles here:
Read and download the full issue:

 

[PDF]

 

The following photographs were used under the Creative Commons license: Roosevelt University (Ken Lund), Gowanus Canal (Allison Meier), Flint, MI (USDA/Lance Cheung), and Cloud Pond (lawepw). The photograph for the Geek Sneaks article is courtesy of Robert Pyatt.

Students as Partners in Curricular Design: Creation of Student-Generated Calculus Projects

 

Steve Cohen, Roosevelt University
Melanie Pivarski, Roosevelt University
Barbara Gonzalez-Arevalo, Hofstra University

Abstract

In recent years advanced undergraduate students have developed projects for our redesigned Calculus II classes. Our student designers create new mathematics projects and present their work at conferences and in local talks. They are often mathematically early in their college careers, and so we can involve students of all levels in research projects.

Our course redesign affected three groups of students: those taking the class, those designing projects for the course, and embedded tutors. This qualitative study examines how the second and third groups of students benefited from their experiences and how we can modify our program to improve it. Evidence was gathered from interviews, surveys, and observation of student research work and its implementation in the classroom. Tutors reported more confidence in their knowledge of calculus and insights into teaching it, and project designers experienced benefits similar to that of a traditional undergraduate research experience.

Introduction

The extensive use of undergraduate research in mathematics is fairly recent, dating back to the 1980s with the widespread introduction of the NSF-funded Research Experience for Undergraduates programs (Lopatto 2010). Most of these experiences are designed for advanced undergraduates who are in their junior or senior years, and they are often used to help prepare these students for graduate study. By using undergraduate students to develop projects for use in a Calculus II classroom, we can give freshmen and sophomores the opportunity to work on research. The purpose of their research is clear; our students are motivated by helping their peers learn. Developing the calculus projects as well as using them to teach calculus helps to contextualize the mathematics curriculum, which is seen as “a promising direction for accelerating the progress of academically underprepared college students” (Perin 2011).

The use of undergraduates as embedded peer tutors is common; see e.g. Evans et al. (2001) and Goff and Lahme (2003). Tutors attend most classes, and depending on the instructor, sometimes work with students during the class sessions. Tutors can connect more deeply with the material, increasing their calculus skills as well as their ability to communicate and collaborate effectively.

In order to avoid ambiguity, we use “embedded tutors” or simply “tutors” to refer to the embedded peer tutors and “project designers” or “student researchers” to refer to students who, after completing Calculus II themselves, worked on researching a project for use in a future Calculus II course. We refer to students who were currently taking the course simply as calculus students.

In the section Connecting Students to the Course, we briefly describe our Calculus II course and the overall role of the tutors and project designers. As this varied by semester, we elaborate with more details and context in the Experiences and Results section. In the section Curricular Design as Student Research, we discuss definitions of student research that occur in the literature and how these connect to our curricular design. In the Methodology section we describe the methodology used in our study. In the Experiences and Results section, we delve into the results of the study, providing and elaborating on themes found in the student responses. In the Conclusions section, we summarize our results with a list of best practices.

Connecting Students to the Course

At Roosevelt University, semester-long projects with a civic engagement component became a regular part of all sections of Calculus II in Spring 2010 (González-Arévalo and Pivarski 2013). Calculus projects help students explore STEM applications, acquire library research skills, and develop communication skills. Beginning in Fall 2010 each class was assigned an embedded undergraduate tutor who attended class at least once a week and helped students in and out of class. Starting in Summer 2011, undergraduate research students had the opportunity to work on designing materials for class projects. Their work involved picking a topic of civic importance, finding appropriate data sources, considering issues related to calculus, and linking these together. There are many possible outcomes for these projects: use in a Calculus II class, honors theses, research talks, and starter ideas for more advanced mathematical research. We consider all of these to be successful outcomes. We also had some unsuccessful outcomes where students failed to progress.

This course redesign originally developed as a result of our involvement with the Science Education for New Civic Engagements and Responsibilities (SENCER) project. Over the years, our continued involvement with SENCER helped us incorporate students as partners in our curricular design. At the end of 2013 we published a project report (González-Arévalo and Pivarski 2013) detailing the redesign of the course and what we then thought would be the benefits. The current paper provides a qualitative assessment of the newest components of this redesign, namely calculus project development by advanced undergraduate research students and the incorporation of embedded tutors. We provide a description of how we use the embedded tutors in class, as well as how students work on the design of calculus projects. Some of this is explained in our aforementioned project report but we have included it here also for the convenience of the reader.

Embedded Tutors

Each semester at Roosevelt University there are one or two Calculus II sections, each with between nine and thirty students. Because there are only one or two calculus tutors per semester, we do not have a formal tutor training process. Each section instructor informally trains their own tutor. Typically, an experienced instructor acts as a secondary faculty resource. The designers do not work directly with the tutors, except in the cases where an individual student acts in both roles. In that instance, the tutor has a deep knowledge of the goals of the calculus project; we elaborate on this in the section Theme A: Insight into better learning processes. We intend for tutors to

  • attend all classes,
  • hold regular office hours,
  • test out the computer labs ahead of time, and
  • work with groups both inside and outside of class.

In practice, we often are unable to find qualified students whose schedule allows them to attend all class meetings, and so we loosen the requirement to attendance at least once per week. Tutors are not needed as graders, as the homework is online. Instructors grade weekly quizzes by hand to gauge where the class is mathematically. Instructors also grade the project parts. Tutors are student workers paid hourly; their salary is part of the institutional budget, often including Federal Work Study.

The use of the tutor varies by instructor. Some embedded tutors help students when they are working on problems during class, but others merely observe the class. When they are made available, some tutors try the class’s computer assignments ahead of time. The tutors always help out during class periods involving computer use.

Project Designers

At Roosevelt University many students transfer in or take calculus their sophomore year, which means they are not ready for a traditional undergraduate research experience until their senior year. Therefore, students need to have research opportunities requiring less background knowledge. Project creation allows student researchers to choose an area for the calculus application.

In the initial course redesign process, research students compiled a literature review on calculus projects. This review and previous semesters’ calculus projects provide a foundation for our project designers. Although they are mathematically constrained to construct a modeling project for a calculus class, designers independently explore an application of their own choosing. We ask that it involve actual data and ideally a social justice component. As they develop their plans, we meet weekly with the research students to discuss their ideas, progress, and challenges. During the week, they work independently, although we are always available either in person or by e-mail. At Roosevelt, students are funded through an NSF STEP grant (Science, Technology, Engineering, and Mathematics Talent Expansion Program) shared with the sciences, and through our university’s honors program.  At a school without funding, project design can act as an independent study project. 

Some students had their own ideas for projects, and others modified existing projects. For example, one student found a project that involved studying population growth through a series of biology experiments. She wanted the project to be compelling to the many science majors taking the class. The original project involved studying population growth in simple life forms and in humans. Since growing cell cultures involved more lab time than was realistic for a calculus class, she arranged to use some existing yeast data from one of our biologists’ research labs. She investigated curve fitting with MAPLE, split the problem into discrete assignments, and structured the investigation to fit the topic schedule of the calculus course. We helped her with this process over the summer and made adjustments during the semester that we used her project.

Design typically happened over the summer, but it sometimes occurred during the semester.  At any given time there are at most two students working on design.  Although they had access to them, the designers did not formally review past projects, and they did not have formal discussions with tutors.  They instead drew informally from their own experiences and anecdotes from their friends.  The designers whose projects were used in courses saw the results of the students’ work through a STEM poster session.

Curricular Design as Student Research

The work that our students do creating calculus projects is a distinctive research experience that has much in common with a traditional undergraduate research experience. In the report “Mathematics Research by Undergraduates: Costs and Benefits to Faculty and the Institution” (MAA CUPM 2006), the Committee on the Undergraduate Program in Mathematics of the Mathematical Association of America lists four characteristics of undergraduate mathematics research:

  • The student is engaged in original work in pure or applied mathematics.
  • The student understands and works on a problem of current research interest.
  • The activity simulates publishable mathematical work even if the outcome is not publishable.
  • The topic addressed is significantly beyond the standard undergraduate curriculum.

Although these guidelines were originally designed to describe a traditional mathematics research project, they apply in many ways to the work that our research students do. Our research students create projects for use in a Calculus II classroom, and so theirs is more of an applied curricular design research project than a traditional mathematics research project. Because of this, the first item is only partly true; the work is often adapted for a Calculus II classroom from another source. The second item holds, and it was a significant motivator for our research students when they chose the topic of their project. The third holds in the sense that their work, when completed, is made public through use in our classrooms. This is similar to an applied project being used by a company. For our students, two of six projects reached this point. Others either lacked time or good data sets or transitioned from a Calculus II project into applied math research for an honors thesis. The final point applies in the sense that it takes them outside the traditional curriculum. While the mathematics might be found in an undergraduate math modeling course, the act of designing mathematics activities that relate to a social justice theme provides a deeper challenge. At the same time, this allows our student project designers the chance to work on research very early in their undergraduate studies.

Dietz (2013, 839) defines three levels of student research activities:

Guided discovery: In these classroom activities, students make step-by-step progress toward a standard (but unknown to them) mathematical formula, or other result, via open-ended, but guided questions.

Independent investigation: In these multi-day activities, the instructor asks open-ended questions that require independent exploration by the students. Results may not be surprising to professionals, but they cannot be easily found in the literature.

Scholarly inquiry: In these intense activities, students engage in scholarly work that is typical of a given field of inquiry.

Our research students engage in curriculum design, researching applied areas and educational theories in order to develop a guided discovery project for the Calculus II class. The process of creating a new calculus project is an independent investigation; for one of the students it moved beyond this into the area of scholarly inquiry where she analyzed the efficacy of her project. For another, her work extended beyond that of a typical Calculus II project and became scholarly inquiry in the area of actuarial science.

There are multiple layers of learning, where advanced students progress beyond Calculus II while helping students currently taking Calculus II. When surveying the literature, we have found a few instances where advanced students created mathematics materials for introductory students. In Duah and Croft (2012), four mathematics students worked with lecturers to create materials for a module in vector spaces and complex variables. The authors noted the call for student-led curricular design in the UK (Kay et al. 2007; Porter 2008), which other fields have responded to. The authors also noted that there was a paucity of literature on student-created mathematics curricula. At least two papers were written in response to Duah and Croft (2012). In Hernandez-Martinez (2013), two students at an English university worked to create mathematical modeling teaching and assessment tasks for a second-year mathematics for engineers course. In Swinburne University of Technology in Australia (Loch and Lamborn 2015), a team of engineering and multimedia students created videos for engineering students to demonstrate how mathematics is used in engineering. In Pinter-Lucke (1993), the program of Academic Excellence Workshops (AEW) at Cal Poly Pomona involved STEM upperclassmen as leaders of cooperative learning-based workshops for underclassmen in courses ranging from college algebra through calculus. Student facilitators selected materials and led weekly problem sessions. The facilitators met weekly with faculty who were teaching the course, and they went to an intensive two-day training session. Although the paper does not mention whether the problems are student-created or student-selected, the process of choosing appropriate course materials is an advanced one, and so this is a notable example of students contributing to the enhancement of mathematics curricula.

Some institutions involved with the SENCER project are also working with students to create curricular materials, notably in biology (Goldey et al. 2012), where students are used to create and update labs. At Guilford College students are creating a new course as a part of their independent study,  and at New England College a proposal is being piloted.  At the United States Military Academy students are doing in-depth assessment research of the university’s curricular design across the STEM disciplines (United States Military Academy 2014).

In many of these cases, a small number of students were selected to participate in this work, but without a particular common experience to draw upon. In our project we bring students into the experience systematically and intentionally, which leads to the following multi-level learning experience: students have the initial experience of working on a Calculus II project as students in the class, then are given the opportunity to work as a peer tutor or project designer (or both). Their subsequent work then impacts the next set of potential tutors and designers. The depth and detail of the work done by our project designers appears to go beyond that of the AEW leaders, and so the combination of multi-level learning with the depth of experience appears to be unique to our endeavor.

Methodology

In this qualitative study, which received IRB approval, we interviewed each student with several open-ended questions (Appendix A) to get them to reflect on how they were affected by the experience.

We created a survey after we interviewed a few of the students, and it included questions that were based on the interviews. The survey itself was anonymous, and it was used to corroborate the interviews. This qualitative study involves a relatively small number of potential subjects: six project designers, one of whom was also a tutor, and eight additional students who were embedded tutors. Eight students, four of whom were project designers, agreed to be interviewed; four of these also completed a follow up survey. Two individuals, including one project designer, completed the survey, but not an interview. Four did not respond to our contact request. Due to the small sample size it was not possible to conduct a quantitative study of these results, and we have therefore avoided all numerical data throughout the paper (since it would not be statistically valid). Instead, we present the results of the qualitative study of the interviews. The survey was only used to triangulate the results of the interviews.

To categorize the responses, the three authors independently reviewed the interview transcripts and labeled responses according to a variety of categories (Appendix B). The labels were compared and discussed until consensus was reached. The results are organized into three main themes as follows:

Theme A: Insight into better learning processes.

Theme B: Insight into applying mathematics/calculus.

Theme C: Feedback on improving the experience of embedded tutors and researchers.

Experiences and Results

In the first part of this section we will describe some of our observations made as course instructors and research advisors. In the second part of the section we will concentrate on the actual results of our interviews.

Experiences

Overall, our experiences have been positive. While some of our embedded tutors merely benefited from a review of calculus, others developed into expert teachers. All students surveyed confirmed that they gained in some way in varying amounts.

At the beginning, we hoped that the use of tutors would contribute to a sense of community among the students in the class and in our major. We also hoped that the class’s mathematical skill level would increase along with the tutor’s mathematical skills. We hoped for smoother computer labs, smoother group dynamics during the project, and a source of peer advice. Two of the tutors explicitly commented on the increased sense of community; we observed this as well, both in the classroom and among the tutors. Due to the small number of class sections observed it was difficult to discern whether embedded tutors consistently improved the mathematical skill level of the class and to assess their group dynamics. But tutors had a noticeable effect on the computer labs; these benefited greatly from the extra support. The amount of peer advice given varied by tutor; some of them commented on this in the interviews. Students in sections where the embedded tutors helped during the class period appeared to be more likely to work with the tutors outside of class.

There has not been a good mechanism for class feedback on the tutors; an online survey had a low response rate, but informally they praised tutors who were actively involved.

Our experiences with student researchers have also been mixed. They have definitely learned the difficulty of finding data, since much of what is found online is processed data that give only means, medians, and standard deviations rather than raw data. They found that government sites are usually a good data source. As a result of their work, we used two student-created projects in our course; these are on modeling population and modeling air pollution. Those student researchers gave talks on their projects, both internally and externally. Two students developed more involved research projects on actuarial and head injury models that were not used in class because they were too advanced for a Calculus II class but which resulted in internal and external talks. Two projects (population, actuarial modeling) developed into honors theses, with the first thesis also studying the impact of the population project on the class using it. Two projects were not finished. One of the student researchers, working on temperatures, was stalled in the data collection stage, and did not relate the topic to calculus. The other, working on planetary motion, had planned activities but lost the plans in a move. After this, we started making students type up their results part-way through their research project to prevent the loss of work.

In our experience, project designers have the best results when they fill out weekly timesheets rather than being paid in a lump sum for their summer research. Timesheets appear to help with their pacing and accountability. In a situation where a designer is working in an independent study, the structure of the independent study course can be used to aid in pacing.

Results

The student interviews indicate that the students benefited from their experience as tutors and designers as well as from working on the Calculus II projects. They also provide valuable feedback on the curricular design. Note that we have removed words such as “Uh, um, like” as well as repeated phrases from the transcription quotes without explicitly labeling each occurrence.

Theme A: Insight into Better Learning Processes

This theme encompasses the students’ sense of themselves as learners and tutors, how math instruction is enhanced by students working on open-ended problems, and the components of effective project design. All of the tutors and designers report gains in their understanding of calculus and in becoming better students themselves. All appreciate the value of a required Calculus II project.

Tutors and designers put considerable thought into what students need to be successful. All of the tutors helped with the technology. One noted that they wanted students to see that the computer is doing something you can do by hand but just much faster. Tutors noted the value of learning to work in teams and that talking about a project is a good way to communicate to outside people what you learned in the class. Tutors noted the value of sitting through the class a second time. They were able to work on their problem areas and to look for connections among the topics and applications. Having experienced the challenge of working on a project that is more open-ended than a typical homework problem, they are in a position to coach students through the process. One tutor spoke at length about the psychology of a student facing a difficult subject. Knowing that their tutor struggled with calculus when they first took the class can reduce the student’s own stress and self-doubt.

Project designers tried to include elements that connected naturally to particular calculus concepts. For example, population growth naturally associates with differential equations. But more importantly they tried to make the project connect to students’ own majors such as biology. The project designers discussed how they had to think about what calculus topics students needed to know and how the project could help them with difficult concepts. One project designer explained that conceptually, integration is difficult for students, and so he wanted the project to connect integration to a real life problem. They are interested in making the topics current such as using calculus to study greenhouse gasses. By putting more emphasis on a meaningful situation, students would naturally move away from a more mechanical view of calculus.

Several tutors viewed the project as motivating interest in math. Previously their math classes involved memorization and refinement of processes. As embedded tutors they appreciated a mathematically relevant context. One said, “I think that it was really interesting getting to do lots of different things, but I also think that it is something that students talk about especially within the same degree program. So if we did something that was more biological, population based… one semester when I had a classmate who did something that was more ecological, like the oil spill one, we could have those conversations about how we’re applying the same skills in a very sort of different context.”

It is evident that tutors and creators think a lot about the students. They care about whether the project is feasible and relevant to student interests. The majority of the students in Calculus II are science majors, so project designers looked for projects that related to biology and chemistry, as we do not offer a physics major at our institution. Typically, projects are related to an important social issue (e.g. climate change and overpopulation). Several tutors expressed empathy for the students and were motivated to help students practice, find related problems in the homework, and discover new ways to explain things.

Tutors took advantage of their unique relationship with the students. Tutors know what the students are hearing from the instructor; they can fill in gaps from the instructor to the students and can also give some of the students’ perspective back to the instructor. This advocacy for the students helps the instructor better understand the needs of the students. The tutor’s view is different from the instructor’s; their recent mastery of the material helps them to understand the students’ thought processes. Students often felt more comfortable talking to a peer.

One tutor had designed the project that was being used that semester.  This experience was especially fruitful, as they had thought very deeply about what they wanted to include in the project, how students learn, and where they were lacking in skills. They reported that this greatly increased their effectiveness as a tutor for the course; this self-reporting is consistent with our observation.

Theme B: Insight into Applying Mathematics/Calculus

Our main motivation for incorporating projects in Calculus II is to give all students the ability to talk about calculus and its uses. The project challenges students to think about the mathematical concepts in a contextualized situation that requires imagination and technological assistance. Our tutors and designers reflected about their time as calculus students, both here and elsewhere, in their interviews. Calculus II students must communicate among themselves about mathematical modeling in order to successfully complete the project. Many cited this communication as crucial.

One described group work in their previous calculus class at a different school: “It was never actually going out into the world and presenting your findings and being knowledgeable of what you were talking about, so I liked that as a component.” One said their experience as a Calculus II student here helped them talk to professionals at a job fair.

The project designers’ reflections deepened when discussing the thinking that went into designing a project. Project designers looked for ideas that were feasible for Calculus II students to complete in a semester. Designers wanted their projects to be socially relevant and therefore searched for an interesting area and then had to deconstruct it; one chose to study head injuries and came across the head injury index. That led to a new kind of analysis for her, working backwards from a formula to work out its derivation. The designers intended for students to experience how a model may be limited, but they still wanted students to make valid inferences about what formulas would be reasonable to try. One designer noted his own growth as a student through understanding why concepts are true rather than simply accepting them as an established principle.

The project designers applied knowledge acquired since having had Calculus II. One, an actuarial science major, designed a project using mortality tables. Reflecting on the project done and the project design led to the problem of data. The projects needed some publicly available data to analyze. They could see that the data used when doing the project as a Calculus II student had problems. Most of the designers expressed awareness of the difficulty of doing a project with real data, in particular, finding a good source and dealing with flaws in the data themselves.

There is consensus among the designers that the project brings value to the class. It gives insight into how calculus can be applied in the real world, and the learning that is needed to navigate the project provides an incentive for students to learn more about calculus itself.

Theme C: Feedback on Improving the Experience of Embedded Tutors and Researchers

Tutors and researchers gave feedback on how to run the different activities. The tutors felt strongly that more preparation and better coordination between instructors and tutors was needed. They gave suggestions about the structure of the class and insights on the value they should bring to it. Tellingly, the project designers did not express concerns about what was expected of them. Their biggest concern regarded the difficulties of finding good projects, particularly those with usable data sets. Because the designers met regularly with their research mentor, they remained informed of the goals and expectations of the project.

Most tutors saw the value and importance of integrating technology into the class, but most did not feel that their skill level improved while tutoring. Many pointed out the need for more training for students, tutors, and instructors. The tutors believe that students in the class need more formal instruction on using the software, noting that much class time is spent troubleshooting the difficulties students are having or getting them started. The tutors felt that more training for them would improve their effectiveness, as they were unable to answer some questions students had. Finally, there are indications that the instructors also need additional training, both on the software being used and on the way to utilize the tutors effectively. In some cases the instructor relied on the tutor to troubleshoot any problems arising with the software. Most tutors felt instructors only explicitly engaged them when technology was being used in that day’s class. In fact, many of the tutors were not active during class unless there was an activity involving computers.

It is not surprising then that communication was the most cited concern among tutors. Several of them said they wished they knew more about the instructor’s goals. The true value of the embedded tutor is to act as a partner of the instructor, and for this he/she needs to be aware of what the instructor is trying to accomplish. Some tutors tended to hold back and not be proactive about helping, in part because they had no direction and in part because of their own inexperience and lack of training.

Many noted the value of having the time structured so that tutors are available to students both in and outside of class. Opportunities to be active in the class were important to the tutors, though some needed more prompting from the instructor. This suggests that some changes in the structure would help facilitate the tutor’s activities. Possibilities include more training involving all members of the team, regular meetings between tutor and instructor where plans for the class are discussed, and a set of prompts for the instructor to help guide the tutor.

Conclusions

Our experiences with student researchers mirrored those of others, even though our student research had a curricular focus instead of a mathematical one. In Seymour et al. (2004), a survey of seventy-six student science researchers at four different liberal arts institutions was compared with literature from fifty-four different papers on hypothesized benefits of being a student researcher.

They found that students reported gains in many areas, including confidence in their ability to do research, finding connections between and within science, their organizational and computer skills, their enthusiasm, enhanced resumes, and their attitudes towards learning and working as a researcher. In our study, we also found these gains, giving evidence that this type of student research project has many of the benefits of a traditional research project.

The main advantage of research with a curricular focus is the possibility for students to work when they are just beyond the calculus level. In our study, designers and tutors gained a deeper knowledge of how to apply mathematics and use technology. Both reflected on what makes a good teacher, indicating this type of experience could greatly benefit undergraduates who are interested in teaching. They also provided thoughtful comments on how to improve the program, most notably the need for consistent communication between tutors and instructors.

4.1 Best Practices for Incorporating Students in Curricular Design

Given the extensive amount of research on embedded tutors, we will concentrate primarily on best practices for student researchers.

  • Meet student researchers and tutors at least weekly.
  • Be available for tech support, orienting all students to new software.
  • Pay students using timesheets rather than lump sums.
  • Encourage researchers to become embedded tutors for the course (both before and after creating a project).
  • Have a set of background literature, including previously used projects, available for new student researchers.
  • Don’t be too prescriptive. Let them brainstorm ideas and act as a sounding board for them.
  • Have at least two students working at the same time; they can give feedback to each other, and bounce ideas off each other.
  • Communicate your expectations to help them steadily progress.
  • Use file sharing (Dropbox, iCloud, etc.) to prevent the loss of student work.
  • Proofread and give feedback on projects and talks. Be supportive and encouraging.
  • Make students aware of speaking opportunities (with enough time to write an abstract, to plan a trip, etc.).
  • Provide internal venues where they can present their work.
  • If the topic gets too deep for calculus allow it to become a more traditional research project.

Recommendations for Further Study

We would love to see a quantitative study on our style of design process. For this, a large university or community college would have to undertake these activities in Calculus II or a similar course. We are also interested in more studies on the impact of doing research early on in college. In our specific work, it would be interesting to increase interactions between the embedded tutors and the project designers.  It would also be interesting to have new project designers formally review old projects.  This would structure their introduction to the design process and help them to think critically about issues involved in the design.  Similarly, when possible, one could have the tutors formally review the current semester’s project in the week prior to the semester as a form of tutor training.

Acknowledgements

We would like to thank Amy Dexter, Bethany Hipple, Sherri Berkowitz, and Amanda Fisher for giving us pointers on the qualitative research process. We would like to thank the SENCER project for the initial impetus to redesign our Calculus II course. Thank you to the reviewers for helpful feedback. Thank you to the NSF STEP grant and the honors program for supporting the student researchers financially, and to the Provost’s office for providing support for some travel and a student worker. Thank you to Janet Campos for her work transcribing the interviews.

About the Authors

Steve Cohen is an associate professor of mathematics at Roosevelt University. He teaches courses to both majors and non-majors throughout the curriculum with particular interest in the History of Mathematics and Abstract Algebra. He is a member of the steering committee of the Chicago Symposium on Excellence in Teaching Undergraduate Mathematics and Science. He earned an M.S. and a Ph.D. in Mathematics from the University of Illinois Chicago and served as a visiting assistant professor at Loyola University of Chicago. Steve likes to play undisclosed games of uncertain outcomes. He also bakes an excellent cheesecake whose outcome is much more certain.

Bárbara González-Arévalo is an associate professor of mathematics at Hofstra University and a SENCER Leadership Fellow. Previously she was an associate professor of mathematics, statistics, and actuarial science at Roosevelt University. Her current research interests include Statistics, Applied Probability and the Scholarship of Teaching and Learning Mathematics. She earned an M.S. and a Ph.D. in statistics from Cornell University, and worked as an assistant professor at the University of Louisiana at Lafayette. She enjoys baking and has two beautiful boys. It is important to note that she does not bake the boys.

Melanie Pivarski is an associate professor of mathematics at Roosevelt University and a SENCER Leadership Fellow. She is currently serving as the department chair for mathematics and actuarial science. She earned a Ph.D. in mathematics from Cornell University and worked as a visiting professor at Texas A&M University.  Her current research interests involve heat kernels and their applications in metric measure spaces. Recently, she has been inspired to include students in her research work. This led her to work in the scholarship of teaching and learning mathematics. She likes to eat her co-authors’ creations, as she is too busy chasing her toddler to bake on her own.

References

Dietz, J. 2013. “Creating a Culture of Inquiry in Mathematics Programs.” PRIMUS 23 (9): 837–859.

Duah, F., and T. Croft. 2012. “Students as Partners in Mathematics Course Design.” In CETL-MSOR Conference Proceedings 2011, D. Waller, ed. 49–55. York, UK: The Maths, Stats & OR Network.

Evans, W., J. Flower, and D. Holton. 2001. “Peer Tutoring in First-Year Undergraduate Mathematics.” International Journal of Mathematical Education in Science and Technology 32 (2): 161–173.

Goff, G., and B. Lahme. 2003. “Benefits of a Comprehensive Undergraduate Teaching Assistant Program.” PRIMUS 13 (1): 75–84.

Goldey, E., C. Abercrombie, T. Ivy, D. Kusher, J. Moeller, D. Rayner, C. Smith, and N. Spivey. 2012. “Biological Inquiry: A New Course and Assessment Plan in Response to the Call to Transform Undergraduate Biology.” CBE Life Sci Educ 2012 11 (4): 353–363. doi:10.1187/cbe.11-02-0017.

González-Arévalo, B., and M. Pivarski. 2013. “The Real-World Connection: Incorporating Semester-Long Projects into Calculus II.” Science Education and Civic Engagement: An International Journal (Winter 2013). http://seceij.net/seceij/winter13/real_world_conn.html (accessed December 19, 2016).

Handelsman, J., C. Pfund, S.M. Lauffer, and C.M. Pribbenow. 2005. “Entering Mentoring.” The Wisconsin Program for Scientific Teaching. http://www.hhmi.org/sites/default/files/Educational Materials/Lab Management/entering_mentoring.pdf (accessed December 19, 2016).

Hernandez-Martinez, P. 2013. “Teaching Mathematics to Engineers: Modelling, Collaborative Learning, Engagement and Accountability in a Third Space.” Mathematics Education and Contemporary Theory 2 Conference (MECT2), June 2013. http://www.esri.mmu.ac.uk/mect2/papers_13/hernandez.pdf (accessed December 19, 2016).

Kay, J., P.M. Marshall, and T. Norton. 2007. “Enhancing the Student Experience.” London: 1994 Group of Universities. http://old.1994group.ac.uk/documents/public/SEPolicyReport.pdf (accessed December 16, 2016).

Loch, B., and J. Lamborn. 2015. “How to Make Mathematics Relevant to First-Year Engineering Students: Perceptions of Students on Student-Produced Resources.” International Journal of Mathematical Education in Science and Technology 47: 29–44.

Lopatto, D. 2010. “Science in Solution: The Impact of Undergraduate Research on Student Learning.” Tuscon, AZ: The Research Corporation.

MAA CUMP (Mathematical Association of America Committee on the Undergraduate Program in Mathematics). 2006. “Mathematics Research by Undergraduates: Costs and Benefits to Faculty and the Institution.” http://www.maa.org/sites/default/files/pdf/CUPM/CUPM-UG-research.pdf (accessed December 16, 2016).

Perin, D. 2011. “Facilitating Student Learning through Contextualization.” Community College Research Center Working Paper No. 29, Teachers College, Columbia University. http://ccrc.tc.columbia.edu/media/k2/attachments/facilitating-learning-contextualization-working-paper.pdf (accessed December 16, 2016).

Pinter-Lucke, C. 1993. “Academic Excellence Workshops.” PRIMUS 3 (4): 389–400.

Porter, A. 2008. “The Importance of the Learner Voice.” The Brookes eJournal of Learning and Teaching 2 (3). http://bejlt.brookes.ac.uk/paper/the_importance_of_the_learner_voice-2/ (accessed December 16, 2016).

Seymour, E., A. Hunter, S. Laursen, and T. DeAntoni. 2004. “Establishing the Benefits of Research Experiences for Undergraduates in the Sciences: First Findings from a Three-Year Study.” Science Education 88 (4): 493–534.

United States Military Academy. Core Interdisciplinary Team. “Interdisciplinary Learning, Assessment, Accreditation, and SENCER Courses: How Do They All Fit Together?” Presentation at the SENCER Summer Institute, Asheville, NC, July 31–August 4, 2014.

Download (PDF, 644KB)

 

Winter 2016: From the Editors

The Winter 2016 issue of Science Education and Civic Engagement: An International Journal is the first published by the National Center for Science and Civic Engagement through its new institutional affiliation with Stony Brook University. [more]We are pleased by the range and diversity of the civic issues addressed by articles, and in particular, by the strong representation of interdisciplinary and trans-departmental collaborations, including several that integrate content from STEM disciplines with material drawn from the humanities and visual arts.

The connection and relevance of science to the fine arts, and of both to our civic and social well-being, to is foregrounded in two project reports. “The Link between Science and the Humanities” by Paula Bobrowski and Ann Knipschild, of Auburn University, describes an innovative course where students learn and conduct research on music and the science behind its effects on the human body and brain—effects with important therapeutic implications for physical and emotional ailments. Physicist Antonino Cosentino reports on the low-cost technology and investigative methods he has developed for students of archaeology, art history and art conservation in “Scientific Examination of Cultural Heritage Raises Awareness in Local Communities.” Cosentino argues that the preservation and conservation of cultural heritage material is a matter of increasing civic importance, particularly in communities where public resources are scarce, Addressing this challenge will demand multi-disciplinary competence in science, technology, history, and art, as well as the creative application of low-cost and accessible technology.

Debby R. Walser-Kuntz and Cassandra Bryce Iroz have integrated visual literacy goals into a multi-disciplinary and experiential learning course on public health by incorporating curatorial and exhibit design strategies. Following a period of community-based work with public-health providers, students partnered with a professional curator and developed a public exhibition, undertaking many tasks required of museum professionals, including brainstorming, identifying key themes and audiences, designing visual presentation strategies, and refining the core content.

Sally Wasileski, Karin Peterson, Leah Green Mathews, Amy Joy Lanou, David Clarke, Ellen Bailey and Jason Wingert from the University of North Carolina-Asheville argue for the significant gains that interdisciplinary collaborations around important civic questions can offer both students and faculty in “Why We Should Not ‘Go It Alone’: Strategies for Realizing Interdisciplinarity in SENCER Curricula.” Reporting on a coordinated curriculum design initiative on the theme of “Food for Thought,” which shared learning outcomes across multiple courses and departments, the Asheville team reviews the challenges, methods, and findings of this ambitious project.

Habiba Boumlik, Reem Jaafar, and Ian Alberts chose the interdisciplinary implications of STEM learning itself as their pressing civic question in “Women in STEM: A Civic Issue with an Interdisciplinary Approach.” They describe a trans-departmental collaboration (Mathematics, Natural Sciences, and Liberal Arts) in a community college that used the question of women’s lack of representation in STEM fields as the basis of a course that advanced quantitative literacy, expository writing, and research skills, while increasing student awareness of this important issue.

Environmental issues, and climate change in particular, continue to generate creative curricular responses that reveal the power of students to contribute to public knowledge. “Storm Impacts Research: Using SENCER-Modeled Courses to Address Policy,” by Michelle Ritchie and James F. Tait details how the coastal impact of hurricane Irene and Superstorm Sandy offered a unique opportunity for organizing undergraduate research. Students from “Science and the Connecticut Coast” (a 2007 SENCER model) joined with students from other courses that teach environmental science “through” issues of civic consequence. Their combined research on coastal vulnerability and produced policy recommendations to increase the state’s coastal resilience in the face of future storms.

Alison Olcott Marshall and Kelsey Bitting at the University of Kansas describe their revision of an existing paleontology course for non-majors, which covered 3.5 billion years of earth’s history, by relating the content to complex, controversial and current issues of immediate concern to students. “Teaching Through Human-Driven Extinctions and Climate Change: Adding Civic Engagement to an Introductory Geology Course for Non-Majors” contextualized the pre-historic geologic record, including extinctions, by showing interweaving it with, and showing its relevance to, the understanding of contemporary climate change and the looming prospect of new human-caused mass extinctions.

As we face yet another unanticipated epidemic in the Zika virus, Abour H. Cherif, Jasper M. Bondoc, Ryan Patwell, Matthew Bruder and Farahnaz Movahedzadeh developed a learning activity that helps students understand epidemics and the immensely complex and unsolved scientific and policy challenges they present to human life and society on a global scale. “The Use of Untested Drugs to Treat the Ebola Virus Epidemic: A Learning Activity to Engage Learners” describes a course that included basic biology and epidemiology content, library research, literature review, and collaborative group work. Students were charged with developing an informed and well-supported position, which they debated with peers, on the use of untested drugs on infected patients during a global health crisis.

We hope you will find this collection of reports from the field informative, and as confirmation of the enduring and generative educational experiences that result from teaching science through real and relevant issues of significance for us all.

Trace Jordan and Eliza Reilly, Co-Editors-in-Chief

Access individual articles here:
Read and download the full issue:

 

 

Download (PDF, 6.15MB)

The photographs for articles by Drs. Bobrowski, Knipschild, Cosentino, Walser-Kuntz, Bryce Iroz, Tait, and Ms. Ritchie were provided by the authors. The photos for articles by Dr. Cherif et al, Dr. Wasileski et al, and Dr. Jaafar et al are from iStockphoto. The extinction line photograph is by Michael Himbeault and used under the Creative Commons license.

Summer 2016: From the Editors

This issue of Science Education and Civic Engagement: An International Journal contains several articles that focus on community partnerships and the educational benefits that arise for all participants.

Naomi Delaloye (University of Montana) and her co-authors describe a science education outreach program for middle and high school students that focuses on outdoor and indoor air pollutants. This theme provides an opportunity for teachers and students to engage in authentic, inquiry-based scientific investigations throughout the school year. Lesson plans are integrated into the school curriculum and aligned with local and national standards, including the Next Generation Science Standards.

Colleen Lopez( California State University, San Marcos) and her co-authors provide an account of a service learning project that enriches the science curriculum for local K-5 students. Teams of STEM majors at the university participated in a carefully structured curriculum development program, followed by a presentation of their lesson in a K-5 classroom. Over three years, this large-scale outreach initiative has transformed the scientific knowledge and attitudes of elementary school students.

Martha Merson (Technical Education Research Centers) and her co-authors describe the Statistics for Action project, which aims to provide the public with intelligible quantitative information about environmental hazards. Participants developed effective strategies for communicating numerical data in a way that could be understood and discussed by members of the community.

Jenny Dauer and Cory Forbes (University of Nebraska-Lincoln) examine how students make decisions about complex issues with both a scientific and social dimension called “socioscientific issues.” The authors use these issues as a framework for developing students’ scientific literacy in a large-enrollment course of approximately 500 students each year. Their project report shows how the course design prompts students to shift their thinking from absolutist opinions to more nuanced reasoning based on scientific evidence.

Nasrin Mirsaleh-Kohan and Cynthia Maguire (Texas Woman’s University) describe how using a photo-book in their classes enables students to make connections between scientific concepts and their real-world experiences. In addition to submitting their own photographs, students wrote reflective commentaries on contributions from other members of the class. This teaching strategy has been implemented in several courses, and can be easily adjusted to accommodate classes of various sizes.

Kenneth M. Voglesonger (Northeastern Illinois University) and his coauthors created Muddy Waters, a first-year experience in an urban university that connects students to local environmental geology. The project-based curriculum enables students to collect authentic scientific data and examine the geological factors that affect drinking water supplies and flooding risk. The course also provides students with skills that enhance their academic success, such as time management and collaborative learning.

We wish to thank all the authors for sharing their engaging work with the readers of this journal.

Trace Jordan and Eliza Reilly, Co-Editors-in-Chief

Access individual articles here:
Read and download the full issue:

Download (PDF, 4.69MB)

 

Photographs to link to articles by Drs. Mirsaleh-Kohan and Voglesonger et al were provided by the authors. Photographs to link to articles by Dr. Dauer et al and Dr. Lopez et al are from iStockphoto. The photograph of the air polluted keys view is from Joshua Tree National Park/NPS/Robb Hannawacker, and the photo of the strawberry field is from the Orange County Archives; both are used under the Creative Commons license.

Storm Impacts Research: Using SENCER-Model Courses to Address Policy

Michelle Ritchie,
Southern Connecticut State University
James Tait,
Southern Connecticut State University

Abstract

Hurricane Irene and Superstorm Sandy caused severe damage to the Connecticut shoreline in 2011 and 2012 respectively. The close temporal succession of the two storms has intensified concerns about rising sea levels and storm intensification attributable to climate change. In response, students at Southern Connecticut State University who have taken a SENCER model course, “Science and the Connecticut Coast,” as well as students from similarly constructed courses that teach environmental science “through” issues of civic consequence, are conducting research on coastal vulnerability with the goal of impacting policy recommendations that could increase the state’s coastal resilience in the face of future storms. The results of these studies suggest that the presence of a wide buffering beach was the most common factor in reducing storm wave damage, and that the characteristics of the storm surge inundation pattern were unexpected. Among the recommendations stem- ming from this research are that management of beach sand become a priority for the state, that management of beach sand be prioritized according to locality and benefit, that the state provide a mechanism for towns to reclaim eroded beach sands that provide a buffer to storm waves, and, finally, that coastal emergency plans include accurate storm tide inundation maps that are accessible to the public.

Introduction

According to the National Council Population Report (NOAA 2013), the Connecticut shoreline has the fifth highest (non-freshwater) coastal population density in the United States and is one of the most intensively developed shorelines in the country. The ratio of the value of total insured coastal county property/km of linear shoreline length for Connecticut is $3.69 billion/km, second only to New York State (AIRWorldwide 2013). In the face of climate change and sea level rise, shoreline properties in Connecticut face increased risk of damage caused by hurricanes and other large storms. This is due in part to poorly informed policies that fail to recognize the regional beach dynamics of Connecticut’s formerly glaciated, fetch-limited shoreline (Tait and Ferrand 2014).

Figure 1. Long Island and Connecticut (Courtesy of GoogleMaps)

In particular, along many parts of the Connecticut shore, communities depend on the presence of sandy beaches to shelter coastal structures and infrastructure from storm damage. While the shoreline is periodically exposed periodically to erosive storm waves, the moderately large, long period swells that rebuild beaches are typically absent due to the sheltering effect of Long Island (Figure 1). As a result, Connecticut’s beaches are chronically erosive.

By connecting students with a multifaceted understanding of Connecticut shorelines and providing hands-on experience with storm damage, the class becomes a site of learning, both inside and outside the university walls. From statistics and coastal processes, to teamwork and presentation skills, SENCER courses in what is now the Department of the Environment, Geography and Marine Sciences at Southern Connecticut State University have become a departure point for students to both conduct coastal research and apply that research to coastal policy analysis.1 After learning important concepts and field and laboratory techniques in formal courses, highly motivated students go on to conduct research as fellows of the Werth Center for Coastal and Marine Studies. It is interesting to note that the students involved in this research are not necessarily science majors but have developed an interest in science as a result of their experiences in these interdisciplinary science courses. Two such courses, “Science and the Connecticut Coast” and “Coastal Processes and Environments,” allow students to experience and understand various coastal environments, their origins, and the processes that shape them, as well as associated environmental issues. Although the focus of this article is research on storm impacts, department coursework and research at the Werth Center also focus on water quality monitoring and coastal sediment pollution by heavy metals.

Figure 2. Cosey Beach. (Courtesy of the Connecticut Department of Energy & Environmental Protection)

Hurricane Sandy moved up the Atlantic coast in late October 2012, interacting with a strong short-wave, mid-latitude cyclone along the way. The combined storms created an extremely large and very low-pressure superstorm with intense winds on the northern side of the cyclone (Grumm and Evanego 2012). These winds, with attendant surge and storm waves, hit the coastal town of East Haven, Connecticut on October 29, 2012. The impacts of Sandy are convolved with those of Hurricane Irene, which had devastated the area just one year earlier in August 2011. While people were still recovering from Irene, Sandy intensified and and spatially extended the damages that already existed. In records of storm damage maintained by the town, specific damages were sometimes not even attributed to a particular storm, a clear indication of the overlapping impact of the two storms (Tait and Ferrand 2014). Superstorm Sandy was generally classified as more intense in terms of maximum storm surge, maximum wind speeds, diameter, and barometric pressure (Fischetti 2012). Prevailing conditions in Connecticut, however, served to moderate the storm’s impact relative to Irene. The storm’s direction shifted west, sending the eye into New Jersey, so that winds along the Connecticut shoreline blew alongshore rather than onshore, which reduced the magnitude of the surge in the East Haven area. Sandy’s forward speed accelerated from approximately 15 mph to 29 mph, so that the storm arrived in the East Haven area earlier than it would have otherwise. According to records from the NOAA New Haven CT tide gauge, Sandy arrived in East Haven at 8:06 p.m., just two hours after a spring low tide, resulting in a storm tide of 8.9 ft (2.7 m) relative to mean sea level, just 7.9 in (20 cm) higher than Irene. If not for these factors, the storm surge would have been higher and would have occurred nearer to a spring high tide, as was previously anticipated. Nevertheless, storm surge inundation, high winds and storm waves caused considerable damage (Figure 2).

To better understand the risk posed to structures and infrastructure, students who had gained research experience in SENCER courses investigated the various controls on wave damage and patterns of inundation in order to assess vulnerability to future storms. The shoreline characteristics investigated with respect to wave impacts included the elevations of houses and roads, beach width and beach erosion patterns, the presence or absence of sea walls, and the amount and types of damage sustained. Spatial patterns of inundation were examined using flood debris deposits, Light Detection and Ranging (LIDAR) data, and Geographic Information Systems (GIS) mapping technology.

Research Activities

Methodology for these studies involved quantitative field observations followed by quantitative laboratory and geospatial analysis. Students were prepared by their classroom experiences to conduct rigorous fieldwork, gather reliable data, analyze the data carefully, and make reasonable interpretations. Collectively, the data constitute a detailed look at various characteristics of the East Haven coastline that contribute to the town’s vulnerability to wave damage and to inundation during large storms. Research activities included construction of coastal road elevation maps, measuring beach profiles and erosion patterns, a house-by-house wave damage assessment, and an inundation map series that included the actual inundation pattern and patterns for other potential scenarios. It should be noted that the research performed by the students has been used in the town of East Haven’s report to FEMA and will be used by the Town Engineering office for future risk assessment.

Wave Damages

Coastal road elevation maps

A series of road elevation maps were generated. Students used a CST/Berger 300-R total station to gather elevation data. The total station uses a modulated infrared laser beam and prism reflector to obtain highly accurate XYZ coordinates, which must then be assigned a coordinate system that includes a known elevation. Previously existing town engineering benchmarks served as points of known elevation. The locations of surveyed elevation points were recorded using geographic positioning technology (GPS) approximately every twenty feet or at every noticeable change in road elevation, whichever came first, in the centermost part of the road. Data were then visualized using ArcGIS by importing point locations and displaying them as XY point values. Spot elevations were then manually input into a new corresponding float point field. Elevation rasters of the same width as the roads were then created using spline and inverse distance weighting interpolation.

Beach profiles and erosion measures

Students also collected data on beach erosion (or stability) by measuring the difference in beach profiles over time. Profiles were measured and re-measured at fixed geographic locations. Over the past 3.5 years, beach profiles were measured along East Haven beaches to better understand longer-term erosion or accretion patterns. Where possible, profile measurements were spaced along the beach approximately 200 m apart. Profile locations were recorded and measured from the seaward-most edge of coastal structures, or from the edge of the beach, to maximum wading depth. These measurements were then plotted using Microsoft Excel to reveal spatial patterns of erosion over time. Calculated variables included the width of the beach to the mean higher high water (MHHW) intercept and the volume of beach sand under the profile and above the mean lower low water elevation. Volumetric measurements were given units of m3 per unit length of shoreline. This allowed total volume of sand calculations for specified reaches of beach.

Structural damage assessment

In addition to empirical quantitative research, one stu- dent conducted door-to-door interviews at each house along the East Haven coastline to determine the nature of wave damage to each structure. A set of questions was asked at each home including the cost of structural damage that occurred, what type of damages occurred, whether or not a sea wall was present, and whether or not the structures were raised at the time. A map was created using Google Earth to show the structural damages pattern. Structures were put into one of the following categories: severe damages requiring demolition, severe damages, moderate damages, minor damages, and no damages.

Inundation
Figure 3. Data collection using laser-based surveying technology. (Courtesy of Isabel Chenowet)

Inundation map series

Immediately following the flooding that accompanied the storm surge of Superstorm Sandy, debris lines in the town of East Haven associated with the peak storm surge were located and photographed, and addresses were noted. Blue dots were spray painted to represent the upper boundaries of the debris line. These point locations were then recorded using GPS and their elevations were measured using laser-based surveying technology (total station) (Figure 3). An average elevation for the flood line point locations was then calculated along with a measure of variability (standard deviation). The average elevation for the flood debris was then compared with the peak storm surge water elevation measured at the nearby (~ 4 km) New Haven, CT tide gauge. The difference between the tide gauge elevation and the elevation determined by averaging debris elevations was just 1.5 cm, allowing a high level of confidence in the data collected.

Flood line locations and elevations were then visualized using Geographic Information Systems (GIS), resulting in a series of maps: (1) storm surge inundation of Superstorm Sandy, (2) storm surge inundation of Superstorm Sandy had it come at high tide instead of a couple of hours after low tide, and (3) storm surge inundation projections based on IPCC (2014) estimated sea level rise. This map series was created in ArcGIS utilizing high- resolution LIDAR imagery and 2010 USGS orthophotography. LIDAR imagery elevation information was extracted and displayed using a semi-transparent teal blue color to signify all areas that had been inundated during Superstorm Sandy (elevations at or below 8.9 ft (2.7 m)). A second semi-transparent layer displayed with purple color was added to signify the hypothetical Sandy at high tide storm tide elevation (elevations from 8.9 ft (2.7m) to 12 ft (3.7m)), as was originally predicted. Representation of these two scenarios were then overlain on USGS orthophotography. All remaining elevations were given no color to signify locations free from inundation. Flood debris point locations were then added and displayed as XY point values. These values matched up exceedingly well with the upper boundaries of the storm tide inundation determined from the LIDAR data.

Results

Figure 4. Cosey Beach during Hurricane Irene. Note collapsing house on left and wave splash overtopping house in center. (Courtesy of James Tait)
Wave Damages

While the presence of seawalls and raised structures all influenced the degree of wave damage, they were not the primary determinants. For structures that were raised, elevation on pilings often proved effective. However, in some cases, the magnitude of elevation was insufficient relative to peak surge elevation. In other cases, minor damages occurred to fences or stairs to elevated decks. In general, however, few structures were elevated before Sandy. Seawalls were frequently overtopped, deflected energy onto adjacent structures, or increased the elevation of wave splash (Figure 4).

Figure 5. A coastal road elevation map. (Courtesy of Michelle Ritchie)

When the coastal road elevation maps (Figure 5), the damage assessment map (Figure 6), and beach profile measurements (Figure 7) were compared, it became apparent that beach dimensions and road elevation played the largest role in determining the severity of wave damage. In particular, older cottages which were not elevated and lacked structural robustness sustained only minor damages if they were sufficiently far back on the beach profile, i.e., had a broad protective beach. This was the case even if road elevation was relatively low. In other areas, road elevation played a key role. The central portion of Cosey Beach Avenue, for example, is the highest part of the road topographically. Damages here were minor to non-existent. In the western portion of Cosey Beach Avenue, houses were the most robustly built, typically had low seawalls, but were at a lower road elevation than those in the central portion, and more importantly, had no buffering beach at high tide (compare Figures 5 and 6).

Figure 6. Damage assessment map. (Courtesy of Stephanie Cherry)
Figure 7. Changes in beach profile via volume of sand. (Courtesy of James Tait)
Figure 8. Map of Superstorm Sandy. (Courtesy of Michelle Ritchie)
Inundation

Inundation, while less dramatic than wave damage, also caused considerable damage and collectively may have been more costly. Sandy’s peak storm tide in East Haven was 8.9 feet (2.7 m). Mean higher high water in this area is 3.4 feet (1.0 m). On the morning of October 29, Sandy shifted its track westward toward New Jersey and accelerated to nearly twice its for- ward speed. As a result, the peak surge arrived in the East Haven (New Haven) area just after low tide. Using NOAA water level data for the New Haven station, the storm tide (predicted tide + the storm surge) elevation for the area was calculated and mapped (Figure 8). The storm tide for Sandy arriving at high tide was 12 feet (3.7 m). The areal extent of flooding and the depth of inundation would have been considerably worse. In addition, escape routes that functioned under the actual storm tide elevation might not have been accessible had Sandy’s forward speed not changed. The difference between the actual storm tide and the potential storm tide is similar to the rise in sea level (~3 feet). predicted for the end of the century by some climate models. The pathway of flooding was also an issue. In many places along the East Haven coast, salt marshes back areas of housing and other development. In most cases, flood waters moved landward from the marshes in addition to overtopping the beaches. As a result, distance from the shoreline was not a guarantee of safety. In one area, the flooding extended the shoreline of Long Island Sound ~1845 feet (~562 m) landward via marsh flooding.

Policy Discussion

In keeping with the ideals of SENCER courses, this student-driven research has substantially increased the fund of public knowledge of storm impact on the Connecticut coast and provided critical information on which

to ground public policy. Now more than ever, students, the general public, and politicians alike have come to realize that climate change is significantly impacting our lives. This is especially measurable in areas like the town of East Haven that were severely impacted by Hurricane Irene and Superstorm Sandy in recent years. In fact, following Hurricane Irene the Connecticut State Legislature authorized the Shoreline Preservation Task Force, a bipartisan group that has made policy recommendations and called for the integration of climate change and sea level rise science into both resource development planning and municipal zoning regulations (Tait and Ferrand 2014).

When assessing coastal vulnerability, it is essential that we look closely at the characteristics of an area to understand how they combine to constitute that area’s vulnerability. In the case of East Haven, Connecticut, topographic elevation and the presence of seawalls and raised structures all play roles in determining the severity of wave damage. Data analysis, however, indicates that beach width and height were the primary determinants of the degree of wave damage to coastal structures during Irene and Sandy. With this information, locally proposed policy changes can be made to more easily and economically maintain the buffering capacity of beaches in the face of future storm waves and improve the accuracy of evacuation warnings.

For example, direct development of the shoreline should be strongly discouraged. The long-standing assumptions that the Long Island protects the Connecticut coast, or that erosion is random rather than methodical, need to be dispelled. In addition, a managed retreat from the coastline in areas of high vulnerability needs to become part of policy conversations (Tait and Ferrand 2014). Furthermore, less expensive alternatives to current beach nourishment projects, which consist of trucking in sand from other regions, should be explored. One such economical option would be to pull eroded sands back onshore. In general, regional planning to make coastal communities more sustainable in the face of future storms needs to be undertaken. Although the State of Connecticut has established an interdisciplinary research, outreach and education center (Connecticut Institute for Resilience and Climate Adaptation) that offers support to local communities, response to Irene and Sandy still largely resides with individual communities.

One improvement to the current system might be a regional sand management plan. At present, beach restoration is discouraged and when replenishment does occur, sand is typically trucked in or shipped in from distant offshore borrow areas or regional quarries. Sand that was originally eroded from the beaches, however, typically accumulates just offshore. Using this sand source to replen- ish the most vulnerable beach areas according to a system of prioritization would be a significant improvement to the current system. In other areas, where replenishment is cost-prohibitive, prioritizing which assets to protect (i.e., which beaches to replenish), and which beaches should be surrendered to nature, would be another viable and more sensible option.

The results of these studies have been made available to the Engineering Department of the town of East Haven and to the Public Works Department of the town of West Haven to aid in their long-range and emergency planning efforts. Similar work is being done for the State Beach at Hammonasset. Recommendations based on the results of this work will be offered to the State Department of Energy and Environmental Protection as well as to the Environment Committee of the State Legislature.

About the Authors

Michelle Ritchie recently graduated with honors from Southern Connecticut State University with a Bachelor of Arts in Geography and a concentration in Environmental Studies.   While at SCSU, she worked as a research assistant at the Werth Center for Coastal and Marine Studies and as an intern at the Office of Sustainability and Recycling Center. She is currently attending Binghamton University in pursuit of a Master of Arts in Geography specializing in Environmental and Resource Management while working as a graduate research assistant at the Hazards and Climate Impacts Research Center. Her research primarily focuses on hazard mitigation, planning and recovery.

James Tait is a professor of marine and environmental sciences in the Department of the Environment, Geography and Marine Sciences at Southern Connecticut State University. He received his Ph.D. from the University of California at Santa Cruz in Earth Science with a specialization in Oceanography and, in particular, Coastal Processes. Since 2011, his research has focused on the coastal impacts of large storms, including Irene and Sandy. Dr. Tait is a SENCER leadership fellow and a co-recipient of the William E. Bennett Team Award for Outstanding Contributions to Citizen Science. Along with his colleague, Dr. Vincent Breslin, he co-authored a course for the SCSU Honors College on Science and the Connecticut Coast. The course has students conduct scientific studies of storm impacts and coastal pollution in Connecticut. The course became a SENCER Model Course in 2007. Dr. Tait is also co-founder of the Werth Center for Coastal and Marine Studies at SCSU. The Center employs talented students as research assistants working on problems such as coastal vulnerability and resilience, metal pollution of coastal sediments and organisms, microplastics in the marine environment, coastal water quality changes, and response of corals to climate change in Long Island Sound.

References

AIR Worldwide Corporation. 2013. The Coastline at Risk: 2013 Update to the Estimated Insured Value of U.S. Coastal Properties. http:// www.air-worldwide.com/Facet-Search/Search-Results/ (accessed January 2, 2016).

Fischetti, M. 2012. Sandy vs. Katrina, and Irene: Monster Hurricanes by the Numbers. Scientific American. Available: http://www. scientificamerican.com/article/sandy-vs-katrina-and-irene/ (accessed January 2, 2016).

Grumm, R.H., and C. Evanego. 2012. “Hurricane Sandy: An Eastern United States Superstorm.” NWS State College Case Examples. http://cms.met.psu.edu/sref/severe/2012/30Oct2012.pdf (accessed January 2, 2016).

Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writing Team, R.K. Pachauri and

L.A. Meyer, eds.) Geneva, Switzerland: IPCC.

National Oceanic and Atmospheric Administration (NOAA). 2013. National Coastal Population Report: Population Trends from 1970 to 2020. http://stateofthecoast.noaa.gov/features/coastal-population-report.pdf (accessed January 2, 2016).

Tait, J., and E.A. Ferrand. 2014. “Observations of the Influence of Regional Beach Dynamics on the Impacts of Storm Waves on the Connecticut Coast during Hurricanes Irene and Sandy.” In Learning from the Impacts of Superstorm Sandy, J.B. Bennington and E.C. Farmer, eds., 67–88. London: Academic Press.

Download (PDF, 1.73MB)

Teaching Through Human-Driven Extinctions and Climate Change: Adding Civic Engagement to an Introductory Geology Course for Non-Majors

Alison Olcott Marshall,
University of Kansas
Kelsey Bitting,
University of Kansas

Abstract

Two of the greatest challenges facing humanity—climate change and the dramatic loss of biodiversity—are best understood through the lens of deep time. We applied SENCER principles to redevelop an introductory paleontology course at the University of Kansas (Geology 121, “Life through Time: DNA to Dinosaurs”) to help general education students understand the value of our discipline in the modern world. Our process included reducing content coverage and connecting geologic concepts to modern challenges, placing students in teams and implementing active learning in every class, and including a final research project that challenged students to mitigate the current mass extinction event. While students were initially uncertain about the new course since it would require more work on their part, final student comments on the class were overwhelmingly positive, and final grades improved dramatically over past semesters, despite a significant increase in the rigor of the course overall.

Introduction

Many students enroll in introductory geology classes merely to fulfill a distribution requirement (Gilbert et al. 2012). At the University of Kansas, all undergraduate students are required to take a natural science course regardless of their major, and this class is often their only college-level science class and the last science class they will ever take. Given that two of the most pressing issues facing humanity right now—climate change and the prospect of human-caused mass extinctions—can best be understood through a geological lens, we decided to redevelop Geol 121, “Prehistoric Life from DNA to Dinosaurs,” an introductory paleontology class for non- majors, according to the SENCER model. Although geology majors can take this class to supplement the required introductory geology course, the majority of the students are not majoring in a STEM field.

Traditionally, this course has been lecture-based, and student learning was gauged by measuring the student’s ability to memorize details about when various animals originated and went extinct through geological time. During the redesign process, we established two primary goals to guide our efforts: (1) geological and paleontological information would be interwoven with the interconnected civic issues of human-driven extinctions and climate change, and (2) students would actively explore and discover knowledge themselves, rather than passively receiving it. By teaching through these complex, controversial, and current issues, and by challenging students to directly engage with the science, we sought to increase student understanding of the scientific method and its impact on their everyday lives. This paper describes the redesign process and preliminary outcomes.

Methods

The redesigned class was offered in Fall 2014 to 60 students. This was the fifth time Olcott Marshall had offered this class, having taught the old version four times between Spring 2009and Spring 2013, to a total of 452 students. Olcott Marshall began the redesign process in March of 2014, and was guided and assisted from that time until the end of the semester by Bitting, whose role in the department was as a teaching specialist. To transform the class, three steps were necessary: (1) streamlining the material, (2) creating opportunities for active engagement, and (3) implementing a final project that allowed students not only to synthesize and evaluate all of the information they had explored during the semester, but to apply that information to matters of immediate societal importance.

Streamlining Material

The first modification was decreasing the amount of material the course would cover. The original version of the class covered 3.5 billion years of Earth history, with each day of the class dedicated to lecturing about a different period of geological time. This much material was overwhelming to the students and did not allow more than a superficial introduction. For the new course, we implemented a backwards design approach (Wiggins and McTighe 1998): First, we established two specific student learning outcomes related to human-driven extinctions and climate change: “Students will be able to

  • analyze the extinction pressures acting on modern organisms in the context of those organisms’ geologic, evolutionary, and climatic history.
  • construct an action plan for mitigating the current mass extinction event that is informed by their understanding of organisms’ roles in and relationships with the Earth system.”

Based on these intended outcomes, we determined what content material to cover in class and shifted the emphasis of the course from declarative to procedural knowledge to allow students to practice skills that would allow them to succeed in the complex tasks leading to the outcomes above. The material we identified for the redesigned course had previously been covered in only eight lectures, but now the students would explore the material in-depth over the course of 30 class meetings.

Active Engagement

In previous years, students were mostly passive recipients of knowledge in the class and were expected to study facts, dates, and terms on their own to prepare for exams. In 2009, 2011, and 2012, student grades were determined solely by four exams. In 2013, students did a short five- to ten-minute activity at the end of each lecture, but these were done individually, and since the students left when they were finished, there were few opportunities for the class to summarize, debrief, or reflect on what they were doing or why.

For the redesigned class, we wanted students to engage with the material from the very beginning, to recognize that their learning occurred through actively exploring the information, and to apply, analyze, and evaluate their newfound scientific knowledge continuously. Every class period, the students worked through a series of two or three related activities designed to scaffold them through the process of activating and building upon prior knowledge (Linn 1995; Vygotsky 1980). Some activities required students to summarize and explain the conclusions of figures from published paleontological studies, while at other times the students worked with raw data they downloaded from the Paleobiology Database (http://paleodb.org) to interpret, examine, and craft hypotheses. To leverage students’ social goals (Ford 1992), and to harness the power of peer instruction ( Johnson et al. 1991), some of the activities were done in groups of three or four, and others required the students to work individually before consulting with their groups (think-pair-share) (Table 1). By including a wide range of types of activities, we were able to provide instructional conditions that appealed to extroverted learners, such as interactive collaborative activities, and ones that appealed to introverted learners, such as solitary deductive sequences ( Jonassen and Grabowski 2012). Additionally, in order to help students integrate their knowledge into a more coherent framework, each class period included time for them to reflect individually, in groups, and as a class on what they were learning and why (Davis and Linn 2000).

Final Project

Although the activities provided the students opportunities to appraise and synthesize information, our ultimate goal for the course was for the students to generate and defend their own research into the twin civic issues underlying the course. To accomplish this, during the last third of the semester we implemented a series of assignments to scaffold students through their collaborative final class project, which culminated in an authentic public event dubbed “Paleocon.” This project required teams of students to choose a threatened modern animal and an extinct counterpart and research their habitats, ecosystems, and lifestyles. They evaluated and described how the ancient organism became extinct and extrapolated lessons learned from that extinction event to help the modern organism survive the twin specters of human-caused extinction pressure and climate change. In lieu of a final examination, the teams presented their findings to their classmates, the university, and the general public in a creative science-fair-style presentation.

Outcomes

Throughout the redesign process, we shifted the emphasis of the activities, assignments, and assessments away from simple memorization and understanding to build in more analysis, synthesis, and evaluation of ideas and information. This shift is well illustrated by a general analysis of exam questions by level on Bloom’s Taxonomy (Bloom et al. 1956) in the Spring 2012 (traditional) and Fall 2014 (redesigned) semesters, shown in Figure 1.

We acknowledge that grades are not a proxy for learning but it is striking that, although the redesign required the students to do more work and to understand the material on a deeper level than in previous years, student performance (as measured by grades) increased as well, eighty percent of the class earning an A or a B (Figure 2). Qualitatively comparing student written work from previous years with that produced by students in the new course demonstrates increases in student engagement and ability to synthesize material on their own (Table 2).

Although the two questions asked are slightly different each year, to answer either question, a student would need to know the age of the Earth and understand the principles of radioactive age dating. In the transformed class, student work reveals a deeper understanding of the material and increased ability to synthesize different types of information than in years past.

Student success, as well as the success of the redesign, are also reflected in the students’ attitudes towards the class and the material. Students were initially leery of the changes in the class, as they correctly surmised that they would be doing more work than a traditional lecture-based course would require. They also were, as one student put it,“shocked that they had to be in a group and do so much group work.” However, they quickly became much more engaged with the material than in previous years; one student commented that the class “motivates us to want to learn the information and apply it to things that interest us as opposed to just being in the library and studying and then going and taking a test.” Or, in the words of another student at the end of the semester: “I expected this class to be somewhat boring and easy but it was anything but that. It provides you with a lot of insight that you can carry on to a lot of career fields. It’s a strong base to the information that you will gain in the rest of your collegiate experience.”

About the Authors

Kelsey Bitting is a Visiting Assistant Professor and Postdoctoral Teaching Fellow for Course Redesign at the University of Kansas. She is a trained geomorphologist   and sedimentary geologist, but her current research interests center on geoscience learning and the implementation of active learning in introductory courses.

Alison Olcott Marshall is a paleobiogeochemist at the University of Kansas. Her research involves using chemistry to quest for and understand fossils, and she has recently become interested in transforming her classes with the hope that students will be excited and involved in their own learning.

References

Bloom, B.S., M.D. Engelhart, E.J. Furst, W.H. Hill, and D.R. Krathwohl, eds. 1956. Taxonomy of Educational Objectives: The Classification of Educational Goals. Handbook 1: Cognitive Domain. New York: David McKay.

Davis, E.A., and M.C. Linn. 2000. “Scaffolding Students’ Knowledge Integration: Prompts for Reflection in KIE.” International Journal of Science Education 22 (8): 819–837.

Ford, M.E. 1992. Motivating Humans: Goals, Emotions, and Personal Agency Beliefs. Newbury Park, CA: Sage Publications, Inc.

Gilbert, L.A., J. Stempien, D.A. McConnell, D.A. Budd, K.J. van der Hoeven Kraft, A. Bykerk-Kauffman, M.H. Jones, C.C. Knight, R.K. Matheney, D. Perkins, and K.R. Wirth. 2012. “Not Just ‘Rocks for Jocks’: Who Are Introductory Geology Students and Why Are They Here?” Journal of Geoscience Education 60 (4): 360–371.

Johnson, D.W., R.T. Johnson, and K. Smith. 1991. Active Learning: Cooperation in the College Classroom. Edina, MN: Interaction Book Company.

Jonassen, D.H., and B.L. Grabowski. 2012. Handbook of Individual Differences, Learning, and Instruction. New York: Routledge.

Linn, M.C. 1995. “Designing Computer Learning Environments for Engineering and Computer Science: The Scaffolded Knowledge Integration Framework.” Journal of Science Education and Technology 4 (2): 103–126.

Vygotsky, L.S. 1980. Mind in Society: The Development of Higher Psychological Processes. Cambridge, Mass.: Harvard University Press.

Wiggins, G., and J. McTighe. 1998. Understanding by Design. Upper Saddle River, NJ: Merrill Prentice Hall.

Download (PDF, 982KB)

Scientific Examination of Cultural Heritage Raises Awareness in Local Communities: The Case of the Newly Discovered Cycle of Mural Paintings in the Crucifix Chapel (Italy)

Antonino Cosentino,
Cultural Heritage Science Open Source

Abstract

The preservation and conservation of cultural heritage material is matter of increasing civic importance, particularly in communities where public resources are scarce. Although this issue is generally considered a challenge for the humanities, scientific research also plays an invaluable and unique role in promoting and preserving cultural heritage in local communities. Because of recent advances in technology and methods of scientific analysis, a deeper understanding of fine art works can be achieved than was ever possible by a simple visual examination. Questions that were once difficult to answer, including precise materials and techniques or original and restored areas, can now be clarified through relatively straightforward scientific experiments using accessible technology. This development opens a new and fruitful avenue for enriching science education, in both formal and informal contexts, through the lens of a pressing civic issue: the investigation and preservation of endangered aspects of local history and culture.

This paper describes the scientific studies carried out on a cycle of 18th-century wall paintings discovered in 2012 in a small Italian village. An international team of research institutes (USA, Denmark, Portugal, and Italy) were involved in the technical examination of the cycle. The scientific findings, which were presented to the local community during a public conference, raised awareness of the value and significance of their unique cultural assets. This represents a successful model for civically engaged science that can bring international expertise to bear on a specific challenge to a local community.

Civically Engaged Science to Preserve Local Art and Archaeology

The preservation of cultural heritage is a critical civic responsibility, especially in Italy where the vast array of cultural treasures ranges from the renowned mega-cities of Rome, Florence, and Venice to almost every village. This rich distribution of material culture demands local civic engagement simply because national and governmental institutions alone cannot effectively manage the sheer quantity and scope of artistic and archaeologic heritage sites. Consequently, the role played by local advocates and organizations is critical, though not always obvious to communities faced with other pressing needs. Advocacy and public education is needed to shed light on the connection between civic and economic wellbeing and the preservation and protection of cultural heritage (Bonacini et al. 2014). In Italy, as well as in other European countries, there have been significant cuts to public funding for art conservation. It is therefore more urgent than ever that local communities mobilize and provide adequate financing to appropriately conserve and maintain their cultural heritage.

Cultural Heritage Science (CHS) is a discipline that examines works of art and archaeology by means of technical and scientific methodologies. Information derived from these studies is used to understand not only when these artifacts were made, who made them, and how they were made but also, more importantly, how are they to be preserved, and what conservation treatment represents the best option and why. As a scientific practice CHS must draw on a wide range of disciplines and fields beyond the sciences, including history, art history, archeology, ethics, public policy, and law. This article outlines a project in Italy to promote the conservation of a cycle of early 18-century mural paintings. It discloses the role of Cultural Heritage Science in raising community awareness of material culture as a civic asset, as well as awareness of the importance of science and technology to the preservation of cultural heritage.

Innovative, Affordable, and Sustainable Scientific Methods

Scientific examination and documentation of art is notoriously expensive. The most important and recognizable works of art are subjected to extensive scientific examination by highly trained experts, using state-of-the-art equipment that costs millions of dollars. This is clearly an impossible goal for the conservation and preservation of the vast majority of cultural heritage objects, which may not be rare or distinguished by global standards but are nonetheless critical to the identity and history of local communities, most of which lack the financial and technical resources of major capitals and their world-class museums. These large museums house “priceless” collections and maintain conservation departments equipped with cutting-edge technologies. In contrast, small to medium-sized cultural institutions have relatively limited access to advanced science and technology and conservation expertise.

Cultural Heritage Science Open Source (CHSOS) was launched in 2012 to bridge this technological divide, to develop and disseminate affordable and sustainable methodologies for art examination that can reach a much larger constituency of local cultural institutions This search for low-cost art examination and documentation is a rapidly expanding research topic, and a growing number of scholars are exploring affordable technical solutions for historical architecture documentation (Santagati et al. 2013). CHSOS disseminates methods for art examination in three significant ways, focusing specifically on low-cost technical solutions: through its popular blog, through publications in open access peer reviewed journals, and through training programs. The CHSOS blog has attracted a growing network of art conservation professionals interested in introducing Cultural Heritage Science concepts into their work. The blog has also inspired collaborative field projects with local stakeholders, such as the Catacombs in Syracuse (Cosentino et al. 2015; Stout et al. 2014) and the Sicilian carts museum (Cosentino and Stout 2014).

The Crucifix Chapel

A cycle of 18-century mural paintings was revealed in 2012 during maintenance work in the Crucifix Chapel of the Mother Church in Aci Sant’Antonio, Italy. The paintings have survived along the corners of the originally square chapel that was later altered, acquiring the current octagonal-shaped construction. All of the murals except the scenes on the corners have been destroyed and irretrievably lost (Figure 1).

CHSOS Studio is located in Aci Sant’Antonio. This discovery in the local chapel was selected as a pilot study to determine whether scientific research can promote better care of cultural heritage, even when financial resources are limited and the heritage material is of local, rather than regional or national, significance. From the moment of their discovery it was clear that the newly discovered murals were in critical need of conservation treatment. CHSOS advertised and solicited the international academic community for help in performing an accurate scientific assessment of the murals, which ultimately resulted in a well documented, informed conservation treatment strategy. The mural paintings were first   documented in 2013 by CHSOS using technical photography (TP) (visible, raking light, infrared, ultraviolet fluorescence, and infrared false color).

TP represents a collection of broadband spectral images realized with a modified full spectrum digital camera and using different lighting sources and filters to acquire images useful for art diagnostics. TP imaging methods are non-destructive, fast, and use relatively inexpensive equipment and tools. CHSOS donated the time needed to perform the initial examination. The results served as a catalyst that gained the cooperation of three universities. A doctoral candidate at University of California San Diego (USA), Samantha Stout, provided on-site analytical pigment studies, which used a portable XRF spectroscopy system; analysis of paint fragments were provided by researcher Milene Gil from the Hercules laboratory at the University of Evora (Portugal), using optical microscopy, scanning electronic microscopy with x-ray spectrometry (SEM- EDS), X-ray diffraction (XRD) and µFT-IR; and finally, Terahertz examination of the plaster work was performed by Danish Technical University (Denmark) doctoral student Corinna Koch Dandolo.

This international collaboration has resulted in peer- reviewed publications (Cosentino et al. 2014a; Cosentino et al. 2014b). The data were subsequently used to formulate a conservation intervention strategy that was presented in 2015 to the community of Aci Sant’Antonio at a conference where the project collaborators reported their findings.

Participants greatly benefited from all aspects of this unique research endeavor. International graduate students and scholars were drawn to Italy because of the abundance of cultural heritage objects and locations, which represent a unique opportunity to test their technical methodologies and learn first-hand about traditional western historical art materials. In turn, members of the local community benefited from their expertise and were informed of the significant artistic features present within the discovered cycle. The scientific research effectively engaged the local community, and the conference helped raise funds for the eventual cleaning and conservation of the paintings. This project, then, represents a successful model of the public communication of science: the active process of scientific inquiry raised local community awareness and appreciation to a level that generated the financial support that was needed to professionally treat and preserve the art object (figure 2).

The local community setting encouraged an explanation of the findings that was straightforward and avoided unnecessary technical jargon. More significantly, in this scientific investigation context, it was TP (technical photography) that led the way. TP proved to be the most cost effective of the methods used and is capable of providing a great deal of information on the painting technique (figure 3). TP is also the most appealing for a non-specialized audience, as the images convey the findings more easily.

The analysis of seven plaster wall fragments revealed that an a secco technique (use of an organic binder rather than the fresco method) was used for the wall paintings (figure 4). The analysis also revealed large areas of repainting using modern pigments applied directly over the original paint layer (figure 5).

Conclusions and Implications for Science Education

Scientific research on the newly discovered wall painting cycle in Aci Sant’Antonio (Italy) illustrates that cultural heritage science methodologies can be used successfully to promote the conservation of art and archaeology, even in poorly funded local communities. The initial findings, detailed visually through technical photography coupled with portable and benchtop spectroscopic methods, proved a successful means to raise awareness of the relevance of science to the community’s identity and history, and to the preservation needs of its specific cultural heritage material. The ability of modern scientific methods to provide evidence and increase public knowledge provided the political and financial leverage needed to take action.

Appropriately, the public conference was held in the same church where the mural paintings are located. Here in this setting the local community participated in an integrated learning experience that spanned both science and humanities, providing information about the painting technique and materials used by the original painter and by the others who, centuries later, retouched the paintings. In this specific case the research for this project was achieved without a direct financial contribution from the community. Indeed, the case study was such a compelling educational opportunity that three major foreign universities donated financial resources and provided Ph.D. students to perform the examination. All participants benefited. The conservation scientists worked together as an international team, comparing notes on the data they obtained with complementary equipment. Today the local community better understands the importance of their newly discovered cultural treasure and is justifiably more proud of it. And the results have proven contagious. Soon after the papers were published, CHSOS was contacted by the community of another village in Sicily, which had followed the Crucifix Chapel studies and now desired to replicate the same model to promote the conservation of mural paintings in one of their medieval churches.

The next step for CHSOS will be to integrate the formal and informal learning environments by extending the academic participation in this initiative through a summer school program for undergraduate students. This project, which will teach rigorous science content“through” the civic challenge of preserving local cultural heritage, will be offered to U.S. college students who are interested in integrating the study of science with art history, archeology, and material culture studies. It will be based on the training programs that CHSOS has offered to professionals and graduate students, and it will be fully hands-on, bringing students to work on selected field projects that conserve Italian art and archaeology while engaging communities in the preservation of their cultural heritage.

About the Author

Dr. Antonino Cosentino founded CHSOS in 2012. Before directing CHSOS he taught“Scientific Methods for Art Investigation” in Italy and at the Pratt Institute in New York and carried out scientific examinations of important works of art as a researcher for European and American institutions such as the European Mobile Laboratory for Art investigation (MOLAB), the New York’s Metropolitan Museum of Art (A.W. Mellon Fellow in Conservation Science) and the University of California San Diego.

References

Bonacini, E.M., M. Marcucci, and F. Todisco. 2014. “#DIGITALINVASIONS. A Bottom-up Crowd Example of Cultural Value Co-creation.” In Information Technologies for Epigraphy and Digital Cultural Heritage: Proceedings of the First EAGLE International Conference, S. Orlandi, R. Santucci, Casarosa, and P.M. Liuzzo, eds., 265–84. Sapienza: Università Editrice.

Cosentino, A. 2013a. “Eventually I Got Viral.” News in Conservation 34 (February): 20–22.

Cosentino, A. 2013b. “Get Out of the Lab, Now!” News in Conservation 39 (December): 14–16.

Cosentino, A. 2013c. “Macro Photography for Reflectance Transformation Imaging: A Practical Guide to the Highlights Method.” e-conservation journal 1: 70–85.

Cosentino, A. 2013d. “A Practical Guide to Panoramic Multispectral Imaging” e-conservation magazine 25: 64–73.

Cosentino, A. 2014a. “FORS Spectral Database of Historical Pigments in Different Binders.” e-conservation journal 2: 53–65.

Cosentino A. 2014b. “Identification of Pigments by Multispectral Imaging: A Flowchart Method.” Heritage Science 2: 8.

Cosentino, A. 2014c. “Panoramic Infrared Reflectography. Technical Recommendations.” International Journal of Conservation Sci- ence 5 (1): 51–60.

Cosentino A., and S. Stout. 2014. “Photoshop and Multispectral Imaging for Art Documentation.” e-Preservation Science 11: 91–98.

Cosentino, A., M.C. Caggiani, G. Ruggiero, and F. Salvemini. 2014a. “Panoramic Multispectral Imaging: Training and Case Studies.” Belgian Association of Conservators Bulletin, 2nd Trimester: 7–11.

Cosentino A., S. Stout, R. Di Mauro, and C. Perondi. 2014b. “The Crucifix Chapel of Aci Sant’Antonio: Newly Discovered Frescoes.” Archeomatica 2: 36–42.

Cosentino A., M. Gil, M. Ribeiro, and R. Di Mauro. 2014c. “Technical Photography for Mural Paintings: The Newly Discovered Frescoes in Aci Sant’Antonio (Sicily, Italy).” Conservar Património 20: 23–33.

Cosentino A. 2015. “Multispectral Imaging and the Art Expert.” Spectroscopy Europe 27 (2): 6–9.

Cosentino A., S. Stout, and C. Scandurra. 2015. “Innovative Imaging Techniques for Examination and Documentation of Mural Paintings and Historical Graffiti in the Catacombs of San Giovanni, Syracuse.” International Journal of Conservation Science 6 (1): 23–34.

Hogan, H. 2015. “Spectroscopy: Going Small to Get the Whole Picture.” Photonics Spectra, March 2015.

Santagati, C., L. Inzerillo, and F. Di Paola. 2013. “Image-Based Modeling Techniques For Architectural Heritage 3D Digitalization: Limits and Potentialities.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5/W2: 555–60.

Stout S., A. Cosentino, C. Scandurra. 2014. “Non-invasive Materials Analysis Using Portable X-ray Fluorescence (XRF) in the Examination of Two Mural Paintings in the Catacombs of San Giovanni, Syracuse.” Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. 5th International Conference, EuroMed 2014, M. Ioannides, N. Magnenat-Thalmann, E. Fink, R. Žarnić, A.-Y. Yen, E. Quak, eds., 697–705. Cham, Switzerland: Springer.

Download (PDF, 2.03MB)