An Authentic Course-Based Research Experience in Antibiotic Resistance and Microbial Genomics


We have designed and implemented a novel microbiology elective course “Microbiology of Urban Spaces” to provide students with a transformative education in microbial ecology and genomics. It champions the values of general education while making sure students are well equipped for their future careers. Infusing my personal research into the course allowed me the time and resources needed to advance my own research, while allowing the students to tackle an authentic and real-world problem that they can be passionate about. Several students who were engaged in the research course developed their own research projects during the summer, based upon their own ideas and questions. These students have taken the first steps towards developing the mindset and confidence in themselves that will enable them to succeed in their future scientific endeavors. Though still in its infancy, this course shows great promise to promote SENCER ideals at Mercy College and beyond.


A Capacious and Civic Issue

Bacteria residing in the environment can act as reservoirs for resistance, having been exposed to many antimicrobials such as disinfectants, heavy metals, and antibiotics (He et al. 2014). Frequently encountered in the environment are the Staphylococci, many species of which are human pathogens. Especially problematic are the coagulase negative staphylococci, as they are among the most resistant, the most prevalent in environmental settings, and frequently the source of hospital-acquired infections of immunocompromised patients (Becker et al. 2014).

One of the most recognized and worrying antibiotic-resistant bacteria is a form of Staphylococcus aureus called MRSA or Methicillin Resistant Staphylococcus aureus. MRSA is recognized as a serious threat by the CDC, causing 80,000 infections and 11,000 deaths annually (CDC 2013). About one in three people carry Staphylococci asymptomatically in their noses. Several different mechanisms of transmission have been described for MRSA and it is frequently isolated from the environment (Smith et al. 2010). The recent emergence of community-associated MRSA or CA-MRSA has had a huge impact on the field, as the bacteria are acquired by people with no known risk factors. What is known about transmission of MRSA (Smith et al. 2010), particularly in the built environment, has generated many questions that can be of interest to our students. Such questions can include the following: Is the choice of material used in construction important in how long bacteria can adhere to a surface? Are some types of staphylococci better able to adhere to surfaces than others? Can some surfaces facilitate colonization by bacteria more readily than others?

Many Mercy students are studying to be healthcare professionals, such as nurses and veterinary technologists. As such, they are usually familiar with antibiotic-resistant bacteria. Thus, my goal is to help students understand the role of human activity, particularly the role they themselves can play, in driving or tackling this problem. Antibiotic resistance is now being recognized as a global threat (Nathan and Cars 2014). Over the past ten years, the Infectious Diseases Society of America, the Centers for Disease Control and Prevention, the World Health Organization (WHO), and the World Economic Forum have placed antibiotic-resistant bacteria at center stage. The WHO exclaimed in April 2014 (WHO 2014) that the problem “threatens the achievements of modern medicine. A post-antibiotic era—in which common infections and minor injuries can kill—is a very real possibility for the 21st century.” The Obama administration released a National Action Plan for Combating Antibiotic-Resistant Bacteria in March 2015 (The White House 2015a). The 2016 federal budget almost doubled the amount of federal funding for combating and preventing antibiotic resistance to more than $1.2 billion (The White House 2015b). Our success or failure in the coming years will depend upon continued support for these initiatives and having a well-educated workforce, ready and prepared to tackle this capacious problem.

Results and Discussion

Students As Researchers

Incorporating research into the classroom, be it the lecture or the laboratory, affords all students an opportunity to be included in and exposed to research, which their economic means, schedule, or background may prevent them from otherwise experiencing (Bangera and Brownell 2014; Gasper and Gardner 2013). Engaging students in undergraduate research can promote retention and career readiness and increase enrollment in graduate studies. It can improve their critical thinking and problem solving abilities as well as their independence (Auchincloss et al. 2014; Harrison et al. 2011; Jordan et al. 2014; Lopatto et al. 2008). Thus, the aim of this ongoing project is to design, implement, and improve upon a novel course-based undergraduate research experience that investigates the prevalence and persistence of antibiotic-resistant staphylococcal bacteria in the environment. By participating in this course, students engage with the literature and keep pace with new developments in antibiotic resistance research; they learn about government-driven and global efforts to combat resistance; and finally, they present their work in a public forum. They begin to understand the dual roles that research and education play in tackling this capacious problem. The course involves isolating and characterizing specific antibiotic-resistant staphylococci colonizing the campus, using a range of classical and next-generation techniques and correlating these findings with metagenetics, a novel technology that allows the researcher to sample all DNA at a site (Blow 2008). This new course called “Microbiology of Urban Spaces” directly ties into my own research agenda and expertise and helps me to recruit and retain a team willing and ready to tackle the problem. Student learning outcomes are presented in Box 1 and specific activities in Box 2. The data generated as part of this project are used as a foundation for further student projects in the summer and have served as preliminary data for federal grant proposals and to obtain funding to support and sustain the course.

Briefly, students isolate individual bacteria using media selective for antibiotic and heavy metal resistance and characterize them phenotypically and genotypically over the course of the semester. They use a BSL2 lab that was recently refurbished for the purpose of microbiological research. The students are then encouraged to design their own phenotypic-based experiments (antibiograms, biofilms, adherence) to be conducted over the summer, and to develop their own research questions while continuing to harness the technologies and techniques learned in the course. The course is designed such that the metagenetic data are available for analysis towards the end, allowing time to expose the students to other characteristics and mechanisms leveraged by environmental staphylococci. The metagenetic component (swabbing, isolating DNA, and sequencing) is entirely at the discretion and choice of the students. In the first meeting of the course, students are introduced to my research questions and the work that  my students and I have completed to date. They then brainstorm what sites would be of interest to target for sampling in view of my research and considering their own research questions. Once they have discussed and planned, the students, working as a team, sample various sites on campus. In Spring 2016, we targeted the new residence hall and sites such as elevator buttons, door handles, and handrails, and in Fall 2016, we targeted various water bodies in the vicinity of Mercy, including the Hudson and East Rivers and the Old Croton Aqueduct. The data we generated in Spring 2016 revealed the impact of human presence on newly colonized buildings at Mercy, and we have begun to design experiments targeting the specific organisms we have isolated and identified on surfaces there. While my original target was antibiotic-resistant staphylococci, we have also used metagenetics to identify the presence of Acinetobacter, Pseudomonas and Streptococcus on surfaces, many species and strains of which are also resistant to antibiotics. We shall adapt and modify our screening in future semesters.

How the Students Are Evaluated

Microbiology of Urban Spaces is designed not only to improve students’ knowledge and understanding of research and antibiotic resistance, but also to train them to be 21st-century citizens. Students are expected to work in teams and build their communication skills. In this digital age we use instant messenger and group chats to facilitate communication. Dropbox is used to store course materials, protocols, and data in shared folders. Digital lab books are used (viewable to all team members) to ensure notes are updated regularly. Students are expected to be able to use and develop their quantitative reasoning skills and develop mastery of basic microbiology techniques such as dilutions, conversions, and basic computational tools and to generate a properly formatted bibliography. Above all else, the course encourages critical thinking and teamwork; students are able to choose their own sampling sites, interpret their findings, and learn from their mistakes. Repetition and iteration ensure mastery. Students are graded on the basis of their participating in lab meetings and lab activities, their detailed lab books, their final papers, and the generation of a scholarly poster. In addition, a survey based upon the SENCER SALG is administered at the beginning and end of the course, as well as the standard Mercy College End of Course surveys.

Student Success, Course Limitations, and Reflections

Since the pilot, I have been able to recruit eight students to participate each semester, and the course has gone through three iterations. Each section has been a success, with students reporting their enjoyment, self-satisfaction with their learning, and demonstrating their improvement in knowledge and skills over the span of the semester. Many had never generated a poster, worked with computational tools, or used molecular biology techniques except in class (if at all). Two students registered to take the course for a second time. Feedback from the End of Course and SALG surveys was positive as indicated in Box 3 and 4 (though not all students responded). In Spring 2016, when asked on the End of Course survey “if they would recommend a course to their friends and why,” students answered, “Sure, opens your eyes to the world of research and looks great when applying to any grad schools,” and “Yes, I personally learned a lot more about microbiology research and improved my skills.”  Limitations and student concerns were also noted in the end of semester surveys, where a student revealed that they didn’t enjoy the lectures. Interestingly, student frustration with backordered/missing lab supplies also manifested itself on the end of semester surveys, indicating that they were indeed having an authentic experience. The minimal budget and modest lab facilities limit some of what can be done at Mercy. Students also learned that working in the lab is frequently frustrating and not always for reasons under our control.

Several of the students who were in the Spring 2016 pilot continued to work on their projects over the summer and developed their own areas of research such as prevalence of enterotoxin genes, detection of bacteria in the gym, natural antimicrobials, and using antimicrobials in building products. At the end of both Spring semesters, students in the class presented their work at a local conference, the Westchester Undergraduate Research conference. In addition, students who continued their Spring 2016 projects into the summer presented their own independent research projects at national and international meetings such as CSTEP (Collegiate Science and Technology Entry Program), ABRCMS (Annual Biomedical Research Conference for Minority Students) and Microbe (the American Society for Microbiology Annual Meeting). On the basis of their abstracts, one student was awarded a partial travel grant to attend ABRCMS and received an honorary mention for her poster at CSTEP. Another student was awarded an ASM Capstone award to attend and present at Microbe 2017.

One of the most useful aspects of the course was using digital tools to facilitate teamwork and continual feedback. The use of Dropbox to store the digital lab books, though simple, was a successful social experience, as the students and I were able to engage with one another and make comments on each other’s work; it was particularly useful since many of the students had jobs and commuted to school. The students could also make use of pictures and notes taken in class shared via Dropbox to ensure that their own lab books were up to date and not missing details. The groups used WhatsApp to connect with one another and to stay in contact throughout the course. This meant that students truly behaved as if they were on a team and worked as a unit throughout. When working on their poster in Spring 2017, the students took it upon themselves to book a conference room and displayed the poster on the screen as they worked together in order to ensure that their poster was generated collaboratively and collectively.

Summary and Future Directions

Undergraduate research experiences can greatly enhance the career development and readiness of all students in STEM fields, and they have shown substantial impact on the retention of students in STEM disciplines. By integrating my research into a classroom-based research experience, I have enabled students to gain exposure to research while enhancing their critical thinking, communication, quantitative reasoning, and teamwork skills. For three semesters, I have had eight students register and the feedback has been positive. Working with the students has also rewarded me: useful and intriguing data were generated, which now inform my research and further student projects in the lab. In the coming semesters, I will continue to improve upon and modify this course so that it exemplifies a SENCER Model Course and provides a truly transformative and successful experience for our students.

About the Author

Davida S. Smyth is an Associate Professor and Chair of Natural Sciences at Mercy College in Dobbs Ferry, New York. A SENCER Leadership Fellow, her research focuses on the genomics of Staphylococcus aureus and the impact of antibiotic resistance in clinical and environmental strains of staphylococci. She is also interested in pedagogical research in the area of student reading skills in STEM disciplines and peer-led team learning in Biology.


The author would like to acknowledge the hard work and diligence of the students at Mercy College and her collaborators at CUNY, Prof. Jeremy Seto (New York City College of Technology), Prof. Avrom Caplan (City College), and Prof. Theodore Muth (Brooklyn College). She would also like to thank the members of the library staff, namely Susan Gaskin Noel, Hailey Collazo, and Andy Lowe, who assisted with the generation and printing of the posters. The development of the novel course “Microbiology of Urban Spaces” was funded through a Mercy Senate Micro-Grant for Course Redesign. Additional funding came from a Mercy Faculty Development Grant. Lastly she would like to thank her colleagues at SENCER, namely Monica Devanas, Eliza Jane Reilly, Stephen Carroll, and Kathleen Browne for their guidance and assistance with the projects to date.


Auchincloss, L.C., S.L. Laursen, J.L. Branchaw, K. Eagan, M. Graham, D.I. Hanauer, … and M. Towns. 2014. “Assessment of Course-Based Undergraduate Research Experiences: a Meeting Report.” CBE – Life Sciences Education 13 (1): 29–40.

Bangera, G., and S.E. Brownell. 2014. “Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive.” CBE – Life Sciences Education 13: 602–606.

Becker, K., C. Heilmann, and G. Peters. 2014. “Coagulase-Negative Staphylococci.” Clinical Microbiology Reviews 27: 870–926.

Blow, N. 2008. “Metagenomics: Exploring Unseen Communities.” Nature 453: 687–690.

Centers for Disease Control and Prevention (CDC). 2013. Antibiotic Resistance Threats in the United States, 2013. (accessed June 13, 2017).

Gasper, B.J., and S.M. Gardner. 2013. “Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Class Is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking.” Journal of Microbiology and Biology Education 14 (1): 25–34.

Harrison M, D. Dunbar, L. Ratmansky, K. Boyd, and D. Lopatto. 2011. “Classroom-Based Science Research at the Introductory Level: Changes in Career Choices and Attitude.” CBE – Life Sciences Education 10: 279–286.

He, G.X, M. Landry, H. Chen, C. Thorpe, D. Walsh, M.F. Varela, and H. Pan. 2014. “Detection of Benzalkonium Chloride Resistance in Community Environmental Isolates of Staphylococci.” Journal of Medical Microbiology 63 (5): 735–741.

Jordan, T.C., S.H. Burnett, S. Carson, S.M. Caruso, K. Clase, R.J. DeJong, … and A.M. Findley. 2014. “A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students.” MBio 5 (1): e01051–13.

Lopatto D, D. Alvarez, D. Barnard, C. Chandrasekaran, H.-M. Chung, C. Du, … and S.C.R. Elgin.  2008. “Undergraduate Research: Genomics Education Partnership.” Science 322: 684–685.

Nathan, C., and O. Cars. 2014. “Antibiotic Resistance – Problems, Progress and Prospects.” New England Journal of Medicine 371: 1761–1763.

Shaffer, C.D., C. Alvarez, C. Bailey, D.  Barnard, S. Bhalla, C. Chandrasekaran, … and S.C.R. Elgin. 2010. “The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions.” CBE – Life Sciences Education 9 (1): 55–69.

Smith, T.C., E.D. Moritz, K.R. Leedom Larson, and D.D. Ferguson. 2010. “The Environment as a Factor in Methicillin-Resistant Staphylococcus aureus Transmission.” Reviews of Environmental Health 25: 121–134.

The White House, Office of the Press Secretary. 2015a. FACT SHEET: Obama Administration Releases National Action Plan to Combat Antibiotic-Resistant Bacteria. (accessed June 13, 2017).

———. 2015b. FACT SHEET: President’s 2016 Budget Proposes Historic Investment to Combat Antibiotic-Resistant Bacteria to Protect Public Health. (accessed June 13, 2017).

World Health Organization (WHO). 2017. Antimicrobial Resistance: Global Report on Surveillance 2014. (accessed June 13, 2017).

Download (PDF, 238KB)

Experiential Learning in the 21st Century: Service Learning and Civic Engagement Opportunities in the Online Science Classroom


Online higher education programs provide opportunities and access to students who might not have enrolled in a higher education program otherwise. As the demand for these online programs increases, including those in the STEM fields, the need for experiential learning opportunities becomes critical. Experiential learning in the online environment can take place in a multitude of ways, can generate student engagement, and can incorporate collaborative learning opportunities. Together, these courses will involve hands-on learning experiences that address real-world needs, service learning, and civic engagement, all which encompass the central focus for these opportunities and are the foundation on which these courses will be built.


A growing demand for online higher education programs brings with it the challenge of incorporating civic engagement responsibilities into an online environment. According to the 2015 Survey of Online Learning, conducted by the Babson Survey Research Group and published in the Online Learning Consortium’s Online Report Card (Allen et al. 2016), 2.85 million students are taking all of their courses in an online environment, while another 2.79 million are taking at least one online course. To put that in perspective, more than one in four students (28 percent) took at least one online course in the fall of 2014. Southern New Hampshire University’s College of Online and Continuing Education (SNHU COCE) currently serves online students and offers more than 200 online college degrees and certificates, including those in Environmental Science and Geosciences. The demand for individuals in these fields is expected to increase 10 to 11 percent faster than average between 2014 and 2024, according to the Bureau of Labor Statistics (2016); therefore, providing innovative, hands-on, experiential learning opportunities for these students is crucial.

SNHU COCE incorporates experiential learning opportunities into its online STEM programs with a unique approach. Experiential learning is grounded in the work of John Dewey, Kurt Lewin, and Jean Piaget (Kolb 1984). Dewey (1938) argued that education and learning are social and interactive processes and stated that there is a connection between education and personal experience. Lewin and his Lewinian Model of Action Research and Laboratory Training focused on learning as facilitated by experience, acquisition of data, and observations. Piaget’s Model of Learning and Cognitive Development incorporates aspects of these two, but also adds reflection and action to the mix. Together, the philosophy of experiential learning can best be described as a process of learning as opposed to learning on the basis of outcomes (Kolb 1984). According to Kolb (1984), “knowledge is created through the transformation of experience.” (See Figure 1 for a depiction of experiential learning in the 21st century framed in the context of Kolb’s experiential learning cycle.)

The purpose of the experiential learning courses for our online learners is to provide students with an opportunity to gain experience in their chosen field. In this report, we’ll focus specifically on civic engagement and service learning opportunities within the experiential learning courses. Civic engagement and service learning opportunities promote a sense of community and civic responsibility using reflective thinking to develop the students’ academic skills. Students participating in these types of immersive opportunities have the chance to work in local communities, address current environmental issues, and assist communities in implementing solutions. Course outcomes for the experiential learning courses revolve around guided reflection. The act of reflection is often a process that allows for the reorganization of knowledge and thought in order to attain greater insight (Moon 2004, 82). According to Moon (2004), understanding, decision making, resolution, and action outcomes can result from the use of reflective processes, including reflective journaling. Together, these reflective processes link reflection with the process of learning.

In the experiential courses, students reflect on scientific practices and real-world situations; they reflect on how experiential learning opportunities play a role in driving the achievement of their goals, and examine the relationship between the application of scientific inquiry and their real-world experiences. Students engage in reflective learning by participating in various discussions with their peers (collaborative reflection), along with writing in weekly journals to document their journey through the many experiences they encounter (personal reflection). (See Figure 2 for an overview of student journal guidelines.)  Upon completion of the course, students produce a guided written reflective piece that summarizes all of their experiences and details how those experiences have influenced their personal goals and future career path and helped identify what questions they may still have as they go forth in their educational and professional careers.

Online Experiential Learning in Science through Service Learning and Civic Engagement

Service learning has been identified as a high-impact practice that promotes higher-level learning and success (Kuh 2008; Brownell and Swaner 2010). The National Task Force on Civic Learning and Democratic Engagement (2012) is calling for renewed energy in community engagement, civic engagement, and service learning. Service learning and civic engagement involve building a sense of responsibility to one’s community and allow students the opportunity to apply concepts and ideas learned in class to real-life situations and scenarios (Holland et al. 2008, 165). Experiential learning with an emphasis on service learning and civic engagement in the online science learning environment can take place in a multitude of ways and can, in fact, generate high levels of student engagement and collaborative learning opportunities. The learning can take place in both the student’s local community and in the online environment where students interact with their peers and a faculty member, sharing, communicating, problem solving, and reflecting throughout the course.

At Southern New Hampshire University’s College of Online and Continuing Education, the goal is to provide students with meaningful learning experiences that connect to real-world relevance. To achieve this goal, an online science experiential learning undergraduate course has been created for our Environmental Science and Geoscience majors that includes varying topics that rotate throughout the year. Students may take this elective course up to two times in total. (See Figure 3 for the Course at a Glance Overview.)

Students engage in short-term immersive learning experiences that span roughly two months and include a minimum of seventy documented hours of experience. (See Figure 4 for the required weekly student timesheet template.) Students have the opportunity to engage in service while concurrently reflecting on their experience, exploring personal and professional development opportunities, applying scientific concepts to real-world situations, and developing competencies and skills around a desired career interest. The course also allows students to make personal connections in their field of interest and provides a face-to-face experience where students can demonstrate competency in the field to potential future employers, colleagues, or collaborators.

Examples of topics that focus on service learning and civic engagement in science for the online science experiential learning course are discussed below.

Service Learning

Service learning is a form of experiential learning that involves equal focus on student learning and community service goals. Service learning encompasses both reflection and reciprocity, where students actively participate in the service learning project and reflect on their experiences, in a dynamic action-reflection process. In Service-Learning in Higher Education (1996), Barbara Jacoby writes, “Service-learning is a form of experiential education in which students engage in activities that address human and community needs together with structured opportunities for reflection designed to achieve desired learning outcomes.” Therefore, in the online experiential learning course, students are actively engaged in learning opportunities that address a real-world need, while also providing time for reflection and discussion as learners progress towards mastery of course learning outcomes.

Service Learning and Grant Writing

Students learn to write a science grant in a real-world setting. They are tasked with finding and working with a local community partner organization in their area (such as a local, state, or national agency or park, museum, wildlife center, science center, aquarium, or zoo). The students work with their chosen entity to develop a grant proposal for funding that will be submitted to a granting agency for consideration. Students are not assessed on the outcome of the grant application process, but rather the outcomes and assessment focus on the experiential reflective learning process. In this experience, students make connections in their local community, serve the organization’s need by submitting a grant on their behalf, and gain a marketable skill.

Service Learning and Field Experience

Field experience can be interpreted broadly, but generally refers to gaining experience in the field in which the student would like to work. For example, it may include service in a branch within the Department of the Interior, e.g. National Park Service (NPS), United States Fish and Wildlife Service (FWS), United States Geological Service (USGS), or serving on a local (city or county) geographic information system (GIS) project. Conversely, it may involve students who serve as data analysts on a scientific study that encompasses large data sets ready for analysis and synthesis. In this case, students work collaboratively with a faculty member who provides the raw data for the course, and the team of faculty and students work together to analyze and synthesize the data. The data analysis and synthesis could also include a final communication of those science results in a journal, data report, or other research publication.

Field experience allows students to gain skills that will help them in their future careers, and to make connections in the field, add to their professional network, and serve the needs of a community project or organization by serving its overall goal or mission in some capacity.

Civic Engagement

Civic engagement centers on making a real-world difference in the community while concurrently developing knowledge, skills, competencies, and abilities to achieve successful course and community project outcomes. Civic engagement can take on many forms in the higher education environment, and it prepares students to be engaged citizens. In our civically engaged experiential learning opportunities, students work on authentic science projects that are designed to make a difference in the community and provide students with real-world experience in science.

Civic Engagement through Community Citizen Science

In the online science experiential learning classroom, the world is our lab (Figure 5). Citizen science, or public participation in science, offers science students the opportunity to engage in science along with a greater community of collaborators or participants. Students gain experience facilitating and leading the public in real-world science. For example, students may create a citizen science species monitoring project on iNaturalist and host a BioBlitz in their local area. A BioBlitz refers to a period of time (such as a weekend) when organisms in a certain geographic area are surveyed and documented. The iNaturalist mobile device app allows for the BioBlitz to take place, with participants using smart phones and uploading images of the organism to the iNaturalist project.

In 2017, the “City Nature Challenge,” which began in California in 2016, became a national event. The April “City Nature Challenge” (Natural History Museum of Los Angeles County 2017) coincided with “National Citizen Science Day” and included a friendly BioBlitz-style competition among sixteen cities across the United States. The “City Nature Challenge” uses iNaturalist to document species in a given area during a set period of time. Therefore, events like this can be a way for students to get involved in their local community and organize, lead, and facilitate BioBlitz events with the public. Engagement in community citizen science and BioBlitz events can lead to publishing ideas and opportunities for students, including the creation of a blog relating their experiences. Reporting about the experience is beneficial to the learning process, and also serves to reinforce an important aspect of the science process: communicating the science. In addition, science students help identify organisms that come in from participant observations during the challenge, and ultimately student participation helps to “crowdsource” and update species guides for each region. (See Figure 6 for an example of the updated species guide from the North Texas area, following the 2017 City Nature Challenge.) In 2018, the City Nature Challenge will be a global event. Imagine the unlimited possibilities for your own students when the world comes together in a locally engaged, globally connected iNaturalist BioBlitz next spring.

Conclusion and Discussion

The journey into experiential learning in the online science classroom has only just begun and the service learning and civic engagement examples discussed in this article are only the beginning for online experiential learning opportunities in science. We look forward to continuously learning from our students and our colleagues, and to applying collective stakeholder feedback as we further expand our course topic offerings. We welcome and invite discussion and collaboration with the entire SENCER community as we continue the exciting journey and evolution in online science education to serve the twenty-first-century learner.

About the Authors

Kelly Thrippleton-Hunter is a Faculty Lead for Undergraduate Science at Southern New Hampshire University’s College of Online and Continuing Education. She received two B.S. degrees, one in Zoology and the other in Environmental Biology and Ecology, from California State University, Long Beach in 2002, a Ph.D. in Environmental Toxicology from the University of California, Riverside in 2009, and an M.A.T. in Science from Western Governors University in 2015.

Jill Nugent is the Associate Dean for Science at Southern New Hampshire University’s College of Online and Continuing Education. She is currently a doctoral candidate at Texas Tech University, investigating locally engaged, globally connected citizen science in university science courses.


Allen, I.E., J. Seaman, R. Poulin, and T.T. Straut. 2016. “2015 Online Report Card: Tracking Online Education in the United States.” (accessed May 31, 2017).

Brownell, J.E., and L.E. Swaner. 2010. Five High-Impact Practices: Research on Learning Outcomes, Completion, and Quality. Washington, D.C.: Association of American Colleges and Universities.

Bureau of Labor Statistics, U.S. Department of Labor. 2016. Occupational Outlook Handbook, 2016–17. Washington, D.C.: U.S. Government Printing Office.

Dewey, J. 1938. Experience and Education. New York: Macmillan.

Holland, B.A., S. Billig, and M. Bowdon. 2008. Scholarship for Sustaining Service-Learning and Civic Engagement. Charlotte, N.C.: Information Age Publishing.

Jacoby, B. 1996. Service-Learning in Higher Education: Concepts and Practices. San Francisco: Jossey-Bass.

Kolb, D.A. 1984. Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs, NJ: Prentice Hall.

Kuh, G. 2008. High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. Washington, D.C.: Association of American Colleges and Universities.

Moon, J.A. 2004. A Handbook of Reflective and Experiential Learning: Theory and Practice. New York: RoutledgeFalmer.

National Task Force on Civic Learning and Democratic Engagement. 2012. A Crucible Moment: College Learning and Democracy’s Future. Washington, D.C.: Association of American Colleges and Universities.

Natural History Museum of Los Angeles County. 2017. “City Nature Challenge 2017, April 14–18.” (accessed May 31, 2017).

Download (PDF, 1.28MB)


Teaching Research to Undergraduates through an Outdoor Education Program


There has been an increased emphasis in recent years on implementing active learning strategies in science courses for undergraduate students. Particularly, undergraduate research methods courses have focused on incorporating pedagogies that utilize a practical application of the course content. As a result, we created a research methods course for undergraduate health sciences students to teach them about research methodology through a hands-on project.  The health sciences students were part of an outdoor education program, where for one week third and fourth grade students from an elementary school came to a camp as part of an outdoor education experience. The health sciences students taught the children a variety of STEM  (Science, Technology, Engineering and Mathematics) and health/wellness skills and content.  In addition, the undergraduate students learned about research methods by conducting their own studies during this outdoor education program. The benefits were twofold.  The health sciences students learned about research methodology in an applied and practical manner and the elementary school children experienced STEM education in an outdoor environment.


The value of active learning in science education has been emphasized by many national organizations (American Association for the Advancement of Science 1993: Association of American Colleges and Universities 2007; National Research Council 1999, 2003a, 2003b; National Science Foundation 1996).  Encouraging students to formulate their own ideas, interpret data, generate conclusions from experimental evidence, and participate in other hands-on activities can be more effective than the passive learning that typically occurs during lecturing.  The increased recognition of the value of active learning is supported by a growing body of evidence demonstrating the effectiveness of incorporating active learning techniques in the undergraduate classroom (Prince 2004).  The literature has shown improved learning when a variety of active learning strategies were used in a wide range of science disciplines including physics (Hake 1998), chemistry (Niaz et al. 2002; Towns and Grant 1997), biology (Burrowes 2003), nursing (Clark et al. 2008), and physiology (Mierson 1998).

In most health sciences undergraduate programs, a research methods course is part of the curriculum.  Many faculty who teach undergraduate research courses are aware of the challenges that are associated with making this material practical for students. Research is an area that students have unfavorable attitudes toward, attitudes that may become even more negative upon taking a research methods course (Sizemore and Lewandowski 2009).  One potential reason for the lack of interest is students’ inability to perceive themselves as engaged in meaningful research activities as undergraduate students (Rash 2005; Macheski et al. 2008). The literature has demonstrated that students tend to learn abstract concepts more fully when they can apply them to their to “real world” settings (Macheski et al., 2008).  In our health sciences department, we have implemented active learning strategies utilizing other approaches (FitzPatrick and Campisi 2009; Campisi and Finn 2011; FitzPatrick et al. 2011; Finn and Campisi 2015), but we wanted to create a way to specifically teach research methods using active learning in an outdoor education program. After examining the effects of active learning pedagogies on student learning and perceptions for a number of years, we have implemented different pedagogies such as clickers, peer-led team mentoring, and group and collaborative learning, to examine how active learning effects both student learning and perceptions. Many of these pedagogies have improved student learning and have had positive impact on student perceptions.

For the outdoor education project, we redesigned our undergraduate research methods course to incorporate participation in a research project.  We hoped that stimulating interest in research through active and collaborative learning would allow students to understand the practical implication of research.

The Outdoor Education Program

During this project, 100 third and fourth grade children participated in a five-day, five hour/day outdoor education program that took place at a local day camp owned by the YMCA. This program was a joint venture between the city’s school district and the local YMCA to provide elementary students with an exciting opportunity to participate in active learning in a camp setting. This was the first outdoor experience in a camp environment for many students who participated in this program.  As part of being enrolled in the research methods course, the health sciences undergraduate students implemented this outdoor education program by utilizing the camp’s program areas and natural ecosystems to provide the children with unique experiential learning activities in four main curricular areas: science and math, healthy living, environmental education, and team building. These engaging activities and the use of natural surroundings encouraged the children to explore their interests and abilities in a safe and nurturing environment. Below is more detail on each section of the curriculum.

Environmental Education: This component of the curriculum corresponds with the goals of the school system, the Massachusetts State School Standards, and the New National Science Standards. Each day, students learned about a different ecosystem at the camp (e.g. the wetlands, fresh water lake, forest, and open field) through a combination of hands-on experiments and lectures.  In each ecosystem, students learned about the different types of animals, plant life, rocks, the cycles of natural resources, and the dangers that each ecosystem faces, among other topics. Students also took nature hikes and performed on-site field tests, including taking water and soil samples and testing pH.

The Science and Math of Camp: This component of the program included several physical activities that provided the opportunity for students to learn math and science skills. These activities included

Maps –The goal of this module was to allow students to develop and make maps using scale, topography, measurements, and other skills.

Archery – While participating in archery, students were provided the opportunity to learn about velocity, rate of speed, distance, inertia, and gravity.

Canoeing – While participating in this activity, students could learn about propulsion, angles, planes, kinesiology and biomechanics, resistance and friction, and wind and currents.

Gaga –The goal of this activity was for students to learn how to play the popular camp game Gaga. While playing, they wear devices such as a pedometer, to measure steps, distance traveled, and overall activity levels. Students took the data from these devices and recorded it, and then, using the Active Science curriculum, analyzed the data, answered questions, and drew conclusions about the data.

Team Building: The team-building component was a progressive learning experience where students were encouraged to challenge themselves in a variety of different ways. This provided emotional and physical growth and gave each student the feeling of self worth and self-accomplishment. The week began with team-building activities on land, such as “get to know you” games, trust falls, spotting techniques, and problem-solving games. As the group mastered the land activities, they moved to the low ropes course. At the camp, there were seven low ropes elements. Each element had two groups participating (one group spotting and one group climbing). After mastering the low ropes course elements, students over the age of ten had the option of trying the high ropes course. There were seven high ropes course elements, including a zip line. Younger students (over the age of eight) had the chance to try the giant swing. The camp’s ropes course offered a variety of fun opportunities to build trust, solve problems and learn the value of collaborative teamwork.

Healthy Living: During this component of the program, students were exposed information about living healthy lifestyles. These included safety concepts, healthy eating and nutrition, and physical activity.  Activities included Water and Boating Safety, Garden Project, Fitness Challenge, Otterthon Relay Race, and Field and Court Games. The students were encouraged to participate, be active, and have fun with their classmates.  They learned about the importance of being physically active, having good nutrition habits, and overall what it means to be healthy.

Research Methods Course

The research methods course was delivered during the summer session for six weeks.  Twelve students were enrolled in the course. During the first two weeks of class, the health sciences students learned about the outdoor education program and became familiar with the curriculum and content that they would be teaching to the children.  From there, the class was divided into four groups of three students each to come up with a research question that they wanted to investigate during the program.   As part of the course, one of the first assignments that the students completed was a proposal that detailed the specifics of the research project. They were required to provide a research question, hypothesis, methods (participants, data collection, data analysis), and the type of research design that they were interested in carrying out.  Based on what they learned at the beginning of the course about the types of research designs, they created a study and a question to match the design.  Once the students completed the assignment on the design of their study, the instructor met with each group to review it.  The instructor provided feedback on ways to improve the study and the students worked to incorporate the changes to make the design stronger.  This back and forth process happened until the instructor felt the design was well thought out and could answer the research question.

Prior to going into the field, the students had a solid research study that addressed a specific research question. The research questions the students focused on were specific to the one-week outdoor education experience. Two of the student projects focused on assessing the amount and level of physical activity that the participants accumulated while in the outdoor education program. They compared physical activity levels such as sedentary, light, moderate, and vigorous between classes, curriculum components, age, and gender.  Another group assessed the science learning that occurred during the camp. They performed pre- and post-assessment to determine science knowledge that was gained through the experience. They had a control group that did not perform the outdoor education program for a comparison.  The last group examined the participants’ perceptions of learning in the outdoor education environment.  They conducted surveys of all participants at the end of camp and then interviewed a subset of children to gather their feedback on the outdoor experience.

During weeks three and four of the course, the health sciences students were in the field implementing the curriculum and collecting data.  At the end of the course (weeks five and six), the students returned to the classroom to analyze their data. The students learned about the different types of statistical analysis (correlational, independent t-test, ANOVA) that could be performed based on their design and research question. The hands-on application of real data to teach the statistical analysis portion of this course was viewed positively by both the students and the instructor.  They worked on creating a final paper and presentation that represented the results of their study.  The course concluded with a presentation from each group to the YMCA senior leadership, board members, classroom teachers and administrators, and faculty.


This approach was a way to demonstrate how to teach research methods to undergraduate health sciences students through a community-based initiative in an urban school district.  The health sciences students felt that a project-based approach was an effective way to learn the content of the course. The course objectives were met through demonstration of performance on course quizzes and through designing and carrying out a research study, analyzing the data, and writing and presenting the results of the project.  As we continue to offer this course, we will use this approach to create measures that assess student perceptions of learning for both the health sciences students and the elementary school children. The active learning and student-centered pedagogical strategy created a culture of ownership over the research project and excited students about the course material.  In many science lecture and laboratory courses, active learning can be an effective method to improve student learning and understanding and to improve student attitudes about a subject. Incorporating a team-based research project that uses the outdoor environment into a research methods course can help prepare students for future research experiences and their professional careers.

About the Author

Dr. Kevin Finn is an Associate Professor and Chair of Health Sciences at Merrimack College. His area of expertise is curriculum and teaching in the health professions with a focus around increasing physical activity in children. Kevin is a licensed athletic trainer in Massachusetts and a certified strength and conditioning specialist.


American Association for the Advancement of Science. 1993. Benchmarks for Science Literacy: Project 2061.  Washington DC: AAAS.

Association of American Colleges and Universities. 2007.  College Learning for the New Global Century. Washington DC: AACU.

Burrowes, P.A. 2003.  “A Student-Centered Approach to Teaching General Biology That Really Works: Lord’s Constructivist Model Put to a Test.” The American Biology Teacher 65 (1): 491–502.

Campisi, J., and K. Finn. 2011. “Does Active Learning Improve Students’ Knowledge of and Attitudes Toward Research Methods?” Journal of College Science Teaching 40 (4): 38–45.

Clark, M.C., H.T. Nguyen, C. Bray, and R.E. Levine.  2008.  “Team-Based Learning in an Undergraduate Nursing Course.” Journal of Nursing Education 47 (3): 111–117.

Hake, R.R. 1998. “Interactive-Engagement Versus Traditional Methods: A Six-Thousand-Student Survey of Mechanics Test Data for Introductory Physics Courses.”  American Journal of Physics 66 (1): 64–78.

Finn, K., and J. Campisi. 2015. “Implementing and Evaluating a Peer-Led Team Learning Approach in Undergraduate Anatomy and Physiology.” Journal of College Science Teaching 44 (6): 323–328.

FitzPatrick, K.A., K.E. Finn, , and J. Campisi. 2011. “Effect of Personal Response Systems on Student Perception and Academic Performance in Courses in a Health Sciences Curriculum.” Advances in Physiology Education 35 (2): 280–289.

FitzPatrick, K.A., and J. Campisi. 2009.  “A Multiyear Approach to Student-Driven Investigations in Exercise Physiology.”  Advances in Physiology Education 33 (4): 349–55.

Macheski, G.E., J. Buhrmann, K.S. Lowney, and M.E.L. Bush. 2008. “Overcoming Student Disengagement and Anxiety in Theory, Methods, and Statistics Courses by Building a Community of Learners.” Teaching Sociology 36 (1): 42–48.

Manning K., P. Zachar, G.E. Ray, and S. LoBello. 2006. “Research Methods Courses and the Scientist and Practitioner Interests of Psychology Majors.” Teaching Psychology 33 (1): 194–196.

Mierson, S. 1998. “A Problem-Based Learning Course in Physiology for Undergraduate and Graduate Basic Science Students.” Advances in Physiology Education 20 (1): 16–21.

National Research Council. 1999.  Transforming Undergraduate Education in Science, Math, Engineering, and Technology.  Executive Summary.  Washington, DC: National Academy of Science Press.

———. 2003. Evaluating and Improving Undergraduate Teaching in Science, Technology, Engineering and Mathematics. Washington, DC: The National Academies Press.

———. 2003.  Bio 2010. Transforming Undergraduate Education for Future Research Biologists. Washington, DC: The National Academies Press

National Science Foundation. 1996.  Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology. Washington, DC: NSF Directorate for Education and Human Resources; NSF 96-139.

Niaz, M., D. Aguilera, A. Maza, and G. Liendo. 2002. “Arguments, Contradictions, Resistances, and Conceptual Change in Students’ Understanding of Atomic Structure.”  Science Education 86 (2): 505–525.

Prince, M. 2004.  “Does Active Learning Work? A Review of the Research.” Journal of Engineering Education 93 (3): 223–231.

Rash, E.  2005.  “A Service Learning Research Methods Course.”  Journal of Nursing Education 44 (10): 477–478.

Sizemore O.J., and G.W. Lewandowski. 2009. “Learning Might Not Equal Liking: Research Methods Course Changes Knowledge But Not Attitudes.” Teaching Psychology 36 (1): 90–95.

Towns, M.H., and E.R. Grant. 1997. “Cooperative Learning Activities in Physical Chemistry.”  Journal of Research and Science Teaching 34 (2): 819–835.

National Research Council.  2003. Evaluating and Improving Undergraduate Teaching in Science, Technology, Engineering and Mathematics. Washington, DC: The National Academies Press.

National Research Council. 2003.  Bio 2010. Transforming Undergraduate Education for Future Research Biologists. Washington, DC: The National Academies Press

Download (PDF, 212KB)

Pre-Service Teachers’ Acquisition of Content Knowledge, Pedagogical Skills, and Professional Dispositions through Service Learning


Teacher candidates seeking a K-6 license took a science methods course during which they participated in focused service learning. Candidates were provided the necessary science content instruction to enable them to write the actual event activities and serve as Event Leaders for the regional Science Olympiad competition. Data related to candidate acquisition of content knowledge, pedagogical skills, and professional dispositions were gathered from candidates’ responses to written reflections and standardized surveys.  It was concluded that through their practical and engaged work participants learned science content and gained pedagogical skills necessary for teaching science.  Further, candidates gained desirable professional dispositions related to such civic engagement elements as developing sustainable partnerships, engaging in mutually beneficial work, and serving a diversity of students.


The University of North Carolina Asheville

The University of North Carolina Asheville (UNC Asheville) opened in 1927 as Buncombe County Junior College. The school underwent several name changes, mergers with local governments and school systems, and moves before relocating in 1961 to the present campus. Asheville-Biltmore College joined the UNC system in 1969 as UNC Asheville, with the distinct mission to offer an excellent undergraduate liberal arts education.

UNC Asheville is the only designated undergraduate liberal arts university in the 17-campus UNC system. UNC Asheville is a public State Institution of Higher Education and is classified as a Baccalaureate College of Arts and Sciences by the Carnegie Classification system. UNC Asheville is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools. The university has received national recognition for its Humanities and Undergraduate Research programs. U.S. News & World Report ranks UNC Asheville as one of the top five public liberal arts colleges in its America’s Best Colleges edition and lists the Undergraduate Research Program among “Programs to Look For” along with some of the top research universities in the country. UNC Asheville is consistently rated a “Best Buy” in the Fiske Guide to Colleges. UNC Asheville founded the National Conference on Undergraduate Research more than 25 years ago, and the university emphasizes student participation in faculty-mentored research projects. Additionally, most UNC Asheville students undertake career-related internships, and are supervised by university faculty during their time working in the field. Seventeen percent of UNC Asheville students take advantage of study abroad and study away programs. Finally, many courses and on-campus programs engage students in service projects aimed at improving the quality of life at home and around the world, which is a major focus of the university.

Teacher Licensure at UNC Asheville

The mission of UNC Asheville’s Department of Education is to prepare candidates for a North Carolina Standard Professional I Teaching license with a liberal arts foundation. The Department of Education engages with all departments across campus in the preparation of professional educators; undergraduate candidates major in an academic area specific to their intended licensure area, along with taking additional courses necessary to earn their North Carolina teaching license. Hence, Education is not a major or a minor, but is an area of concentration in addition to the academic major. This structure reflects the liberal arts model. Undergraduate licensure candidates in K–12 and 9–12 areas major directly in their area of specialty (e.g. those seeking K–12 Art licensure major in Art), candidates in 6–9 areas either major directly in their area of specialty or in Psychology, and candidates in K–6 may choose any major. This model necessitates a strong liaison-based partnership between representatives from each of the academic majors and the Department of Education. Post-baccalaureate candidates who have earned the requisite Bachelor’s degree may earn a teaching license by taking the necessary Education courses only, or may take a prescribed set of major courses in addition to their Education courses if they are pursuing licensure in a different area from their undergraduate major. Post-baccalaureate candidates are expected to meet the same program requirements and outcomes as undergraduate candidates. The National Council on Teacher Quality has rated the UNC Asheville Department of Education as a Best Value among North Carolina Colleges of Education, and among the top six teacher preparation programs in the Southeast.

Because UNC Asheville is a liberal arts institution, candidates take Arts and Sciences courses in the departments across campus in which they acquire their content knowledge. Courses taken in the Department of Education are structured to build on this content knowledge in the provision of pedagogical skills. This model is supported by such researchers as Davis and Buttafuso (1994), who provide an historical perspective on the role of small liberal arts colleges and teacher preparation. Their claim is that the type of curricular cooperation that is inherent at liberal arts institutions such as UNC Asheville promotes the development of teachers who are knowledgeable, thoughtful, and reflective.

The schools with which UNC Asheville partners frequently speak to the strength of the liberal arts model. In fact, they claim that the strong content knowledge UNC Asheville teacher licensure graduates possess, coupled with their pedagogical knowledge, puts these graduates at the top of the applicant pool. For all of its strengths and advantages, this liberal arts model does come with limitations. The greatest of these limitations is time in the teacher licensure program.  Because Education is not a major at UNC Asheville, and candidates are taking their major and other content courses in other departments, there are precious few hours in each candidate’s schedule in which Education courses can fit. All programs have been structured so that undergraduate candidates can graduate with their major and licensure in four years of full-time attendance, but the course of study is intense for these candidates. And this means that Education courses must be efficient at all costs. Therefore, the focus of Education courses at UNC Asheville is almost strictly on pedagogy. It is vital, then, for instructors of Education courses to find ways to reinforce, and in some cases even facilitate the learning of, content knowledge that candidates need—even though Education courses are technically not “supposed to” focus on this.


North Carolina Requirements for Teacher Licensure Programs

In 2009, all licensure programs in North Carolina were revised to meet North Carolina Department of Public Instruction (NCDPI) requirements. As part of these requirements, all licensure programs were to develop Evidences to be completed by each teacher licensure candidate and submitted to NCDPI to show candidate attainment and demonstration of competencies that meet six statewide Standards for 21st Century Teaching and Learning. These standards include candidate attainment of content knowledge, pedagogical skills, and professional dispositions with which the Department of Education at UNC Asheville’s Conceptual Framework tenets of Content, Pedagogy, and Professionalism directly align. Following is a summary of the six state-required standards, and the approved Evidences the UNC Asheville Department of Education developed to meet the standards (note that for standards 1 and 4 NCDPI defined a required Evidence for every licensure program in the state)

Breadth of Content Knowledge – All candidates completed at least twenty-four semester hours of coursework relevant to the specialty area from a regionally accredited college or university with a grade of C or better in each of the twenty-four hours in order to be licensed. Additionally, all K–6 and Special Education candidates must have received satisfactory scores on the Praxis II exam in order to be licensed.

Depth of Content Knowledge – Candidates completed a Content Exploration Project. Data from assessment of this project showed candidates’ depth of understanding and application of content knowledge per professional and state standards for the specialty area, and the ability to relate global awareness to the subject.

Pedagogical and Professional Knowledge Skills and Dispositions – Candidates created a three- to five-day integrated thematic teaching Unit Plan. Data from assessment of the unit showed candidates’ ability to design effective classroom instruction based on P–12 professional and state standards, and use of effective pedagogy and research-verified practice.

Pedagogical and Professional Knowledge Skills and Dispositions – All student teachers are evaluated by their supervisor, in consultation with the P–12 clinical faculty member, using the state-required Certification of Teaching Capacity Instrument. All candidates must receive a rating of “Met” on each facet of the instrument on the final evaluation.

Positive Impact on Student Learning – Candidates completed an Impact on Student Learning Project. Data from assessment of this project showed candidates’ impact on P–12 student learning given state P-12 standards.

Leadership and Collaboration – Candidates completed the Professional Development Project: Self, Learner, Community. Data from assessment of this project showed candidates’ ability to demonstrate leadership, collaboration, and professional dispositions per professional and state standards for teacher candidates.

Unit faculty applied common rubrics, also approved by NCDPI, to evaluate candidate products related to Evidences 2, 3, 5, and 6, and all candidates had to score a level 3 or higher on each facet of the assignment rubric.

In 2014, the North Carolina State Board of Education (SBE) adopted a policy requiring that all licensure candidates in every licensure area pass the SBE-approved licensure exam(s) for each initial licensure area. For all licensure areas except K–6 and Special Education, these approved exams were the Praxis II.  For K–6 and Special Education, the SBE adopted a new Pearson Foundations of Reading and General Curriculum Test. The Pearson Test is comprised of a Foundations of Reading subtest; a General Curriculum Mathematics subtest; and a General Curriculum Multi-Subjects subtest consisting of questions pertaining to Language Arts, History and Social Science, and Science and Technology/Engineering. These subtests are all comprised of multiple choice items testing content knowledge in each area. An Integration of Knowledge and Understanding section is also completed by test takers, which includes a few constructed response items to test pedagogical knowledge. For K–6 and Special Education candidates and licensure programs, the new Pearson Test signified a significant change from the previously required Praxis II exam, which almost exclusively tests pedagogical knowledge. The SBE-adopted policy also included the provision that the Evidences required for standards 2 and 3 would be replaced by candidate scores on the SBE-approved licensure exams. Candidates take their licensure exam(s) as one of the final steps to completing their licensure process, after finishing their licensure program.

Purpose for the Study

The aforementioned liberal arts model and changes to licensure exam requirements posed a new challenge regarding the K–6 licensure program at UNC Asheville. Because of the number of areas in which a candidate must be prepared to teach at the K–6 level (Reading, Language Arts, Mathematics, Science, Social Studies, and Health being among the major ones), the K–6 licensure program at UNC Asheville is by far the largest in terms of the number of Education courses required. UNC Asheville K–6 candidates had enjoyed a 100 percent pass rate on the Praxis II for a number of years before the Pearson test was adopted. However, it is important to remember that the Praxis II centered almost solely on pedagogy. The new Pearson test focuses almost solely on content, whereas K–6 courses focused almost solely on pedagogy in direct alignment with former licensure exam requirements and the liberal arts model. To meet the new requirements, faculty in the K–6 program at UNC Asheville began work to structure courses and experiences to ensure that candidates were provided the knowledge necessary to make them successful in their quest for a license and with regard to the competencies required to be effective teachers, while continuing to serve the needs of the public schools and community. This researcher serves as the instructor for the Elementary Science Methods course and worked to structure the course and provide candidates with science-related learning experiences for these reasons. This project grew as a result of this structuring and the desire to determine its impact.

Specific Goals for Candidates, Students, the Community, and University Faculty

The desired outcome of this project was that UNC Asheville K–6 licensure candidates and participating elementary students, as well as the involved UNC Asheville faculty member who is the instructor of EDUC 322, would benefit from this civic engagement project. This would be made possible through the use of effective teaching strategies, including inquiry, discovery learning, questioning strategies, and demonstrations; active reflection on theories of science education and learning, and how they can be utilized in the classroom and beyond; participation in a variety of educational experiences which positively impact the teaching of science; and sharing responsibility within the greater community for and recognizing the value of collaborations on issues of mutual concern, benefit, and accomplishment.

The specific goals related to this project were as follows:

UNC Asheville K–6 licensure candidates will acquire content knowledge necessary for teaching science in their future classrooms.

UNC Asheville K–6 licensure candidates will acquire pedagogical skills necessary for teaching science in their future classrooms.

UNC Asheville K–6 licensure candidates will acquire professional dispositions necessary for being effective teachers in their future classrooms.

Elementary Science Methods Course

All K–6 licensure candidates are required to take EDUC 322 (Inquiry-Based Science Instruction, K–6). Throughout the semester, candidates enrolled in EDUC 322 learn about effective Science, Technology, Engineering, and Mathematics (STEM) teaching methodology, and how these methodologies translate to their teaching of future elementary students about science and the scientific method. The course has a focus on teaching using the 5E Learning Cycle. Great emphasis is placed on inquiry and discovery learning, as candidates in the course are afforded traditional classroom learning in addition to participation in hands-on labs aligned with science strands. Candidates also engage in an inquiry-based micro-teaching experience into which the use of Common Core text exemplars are integrated. Given the liberal arts model, the primary goal of the course is to teach effective methodologies for science education, as science content is taught within the other departments in the university outside of the Department of Education. However, science content knowledge is drawn upon throughout the EDUC 322 course within the context of exploring teaching methodologies.

As part of this instruction and practice, licensure candidates in EDUC 322 participate in field experiences during which they gain additional hands-on experience working with elementary students on the teaching of science. Candidates spend six sessions in an elementary classroom observing and/or assisting the classroom teacher, and in addition, each candidate teaches an inquiry-based lesson on their own. Candidates complete a comprehensive Science Notebook as a reflection on the field experience.

Elementary Science Methods and Service Learning

Perhaps the most significant aspect of the EDUC 322 course is candidates’ focused participation in service learning. Candidates participated in the Asheville City Schools (ACS) Kids Inquiry Conference (KIC) in the Spring 2010, Spring 2011, Fall 2011, Spring 2012, Fall 2012, Spring 2013, and Spring 2014 semesters.  Unfortunately, the event had to be cancelled due to ACS’s focus on Read to Achieve mandates.  Candidates participated in the Elementary Science Olympiad in the Spring 2013, Spring 2014, Spring 2015, Spring 2016, and Spring 2017 semesters.

The KIC was an event unique to Asheville City Schools, and was conceived as an alternative to the traditional Science Fair activity. The instructor of EDUC 322 partnered with the ACS Science Coach to plan and facilitate the KIC. Throughout each semester in which KIC was held, EDUC 322 candidates completed their field experiences in the classrooms of third, fourth, and fifth grade teachers and students who would be participating in KIC. This provided the EDUC 322 candidates with the opportunity to assist students with their projects and guide students as they engaged in the inquiry and discovery learning necessary to complete their projects. To complete their projects, students, usually working in pairs or groups of three, engaged in scientific inquiry focused on student-generated questions that came from their curiosities about the natural world. The teachers and EDUC 322 candidates guided students in generating these questions and led students through the process of making predictions, collecting data, analyzing the data, and drawing conclusions related to these questions. Students then created a visual presentation of their investigation and results, and prepared to discuss these with peers.

After a semester of work, the students were prepared for the KIC. During the KIC, UNC Asheville hosted the students and their teachers in a conference on the UNC Asheville campus.  During the conference, the students presented visual representations of their work, and asked and answered questions from their peers. The EDUC 322 candidates who worked with the participating students and teachers served as conference facilitators. Candidates’ roles as facilitators consisted of keeping time during each presentation, aiding with the discussion by asking questions and offering topics for discussion, and assisting students as they rotated to different tables so they could experience a variety of presentations. The instructor of EDUC 322 supervised and guided the candidates as they completed their work during the semester, and instructed candidates regarding safe and ethical practices for working with students. The instructor of EDUC 322 also served as the conference host and facilitator by coordinating all of the logistics for the conference including room reservations, scheduling, bus parking, and arranging for a campus tour for students. Each conference typically involved approximately 200 elementary students and ten elementary teachers.

Science Olympiad is a national program which engages elementary, middle, and high school students in competitions based on national and state STEM standards. Most competitions are team-based, and all require students to engage in hands-on inquiry science activities. Students choose their preferred event(s) from a list of approximately eighteen, and spend the better part of a school year working on their chosen event(s) with their school’s sponsor teacher and their peers on the Science Olympiad team in order to prepare for the competition.

The instructor of EDUC 322 has partnered with the Regional Director of the Elementary Science Olympiad, who is also a high school science teacher in an area school. At the beginning of each EDUC 322 semester, the Regional Director visits the EDUC 322 class and together she and the EDUC 322 instructor provide a description of and orientation to Science Olympiad. During this orientation, EDUC 322 candidates are provided information about their role related to their participation as event leaders and event writers for the Science Olympiad competition. This information is on topics such as the event code of ethics, event rules, event writing guidelines, event scoring guidelines, and safe and ethical practices regarding working with students.  Throughout the EDUC 322 semesters, candidates work to write their events according to competition standards and under the supervision and guidance of the EDUC 322 instructor. This supervision and guidance involves advising candidates as to the content of their events, providing them with resources to obtain the information necessary to write their events, reviewing and editing their work, assisting them with gaining access to hands-on materials they require to carry out their event, and making copies of student answer sheets and any other written materials needed for events.

EDUC 322 candidates put their knowledge into further practice as they serve as event leaders for the actual Science Olympiad competitions. Event leadership consists of supervising competing students, setting up event materials, and scoring competitors’ products. Candidates are supervised by the EDUC 322 course instructor and the Regional Director at each Science Olympiad event.


Candidate Written Reflections – KIC

Participating EDUC 322 candidates were required to produce written reflections of their experience working on the KIC project. These reflections were graded as part of the course grade for EDUC 322, and evaluated using a standardized rubric. The prompts provided for reflection were as follows:

Situational Context – List the date(s) during which you served as a facilitator, how many students were at your table during each session, and how many presentations you saw during each session.

Describe – Briefly describe the student presentations for which you served as a facilitator.

Analyze – Discuss the presentations you saw in terms of the relevance of the topics of the investigations carried out, the effectiveness of the presentations, and the quality of the questions asked by peers.

Appraise – Evaluate what you observed as a facilitator. Discuss any problems that occurred and why they occurred, what questions you have about the KIC process, and other topics you find relevant.

Transform – Discuss your involvement in KIC as it relates to your future teaching practice in science. Be sure to answer these questions: What might you do with the knowledge you gained to inform your teaching?  How did what you learned by participating in KIC connect with the topics you learned in our course?

Candidate Written Reflections—Science Olympiad

Participating EDUC 322 candidates were required to produce written reflections of their experience working on the Science Olympiad project. These reflections were graded as part of the course grade for EDUC 322, and evaluated using a standardized rubric. The prompts provided for reflection were as follows:

Situational Context – Name the event you led and the event with which you assisted. Give a two sentence description of each event.

Describe – Describe what you did to prepare the event you led.

Analyze – What was student performance like in the event you led?  What was the range of student performance? What surprised you?

Appraise – Evaluate what you observed as an event leader. Discuss what problems occurred and why they occurred, and what suggestions you have for improving the event you led and the tournament as a whole.

Transform – Discuss your involvement in Science Olympiad as it relates to your future teaching practice in science. Be sure to answer these questions: What might you do with the knowledge you gained to inform your teaching?  How could you implement your own Science Olympiad experience for your students, even if it wasn’t supported in your school or district?

Standardized Science Olympiad Surveys

The standardized surveys used by Science Olympiad as an organization were given to all participating UNC Asheville candidates to gain feedback from them after they served as event leaders, and the results were analyzed. Questions on the survey included the following and were rated by candidates on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree):

I was fully prepared to lead this event.

Tournament director(s) were well organized.

The event rules were clear.

The event site for this event was satisfactory.

I was provided with the materials and resources I requested.

Orientation opportunities were provided to prepare me.

Students were prepared for the event.

The event was inquiry in nature.

Service Learning Survey

A Service Learning Survey was administered to EDUC 322 candidates as both a pre- and post-assessment of the impact of their participation in service learning. Appropriate IRB guidelines for a classroom-based project were followed. Questions included on the survey were as follows and were rated by candidates on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree):

As a result of participation in service learning I am likely to

examine my own cultural experiences

educate myself on multiple perspectives

use reflection to evaluate my current teaching activities

develop lessons that include contributions of all cultures

build on learners’ strengths

teach global awareness

incorporate different points of view in my teaching

create lessons that require student collaborations

incorporate student reflection into lessons

encourage students to change things at school they disagree with

encourage students to change things in the community they disagree with

teach students that they can make a difference

teach students to work for equality for people of different races, cultures, or genders

make students aware of their political or civil rights

teach students that the world outside of school is a good source of curriculum

work to improve collaboration between school and community

seek a leadership role in curriculum development at my school

participate in decision making structures (e.g., school improvement team, district planning team, school board)

seek information (e.g., local, state, or national data) when developing school improvement goals

have an interest in education policy

work to understand community problems

work with someone else to solve a community problem

become regular volunteer for an electoral organization

become a regular volunteer for a non-electoral organization

be an active member in a group or organization

regularly vote

persuade others to vote

contact elected officials

regularly seek “news” (newspaper, radio, news magazine, internet, TV)

Pearson Science and Technology/Engineering Subtest

The standardized Pearson test, composed of a Foundations of Reading subtest; a General Curriculum Mathematics subtest; a General Curriculum Multi-Subjects subtest consisting of multiple choice questions pertaining to Language Arts, History and Social Science, and Science and Technology/Engineering; and an Integration of Knowledge and Understanding section which includes a few constructed response items to test pedagogical knowledge as applied to teaching a concept in a content area, has been taken by all K–6 candidates since the 2013–2014 academic year. Each test taker receives an overall Scale Score, a Sub-Area Performance score for each of the three General Curriculum Multi-Subjects subtests, and a score for the Integration of Knowledge and Understanding section. The Sub-Area Performance scores for the multiple choice items are presented on a scale from 1 to 4 to show how many items test takers answered correctly, as follows:

1-Few or none of the items answered correctly

2-Some of the items answered correctly

3-Many of the items answered correctly

4-Most or all of the items answered correctly

The Integration of Knowledge and Understanding scores for the constructed response items are presented on a scale from 1 to 4 to show the quality of the response by the test takers, as follows:

1-Weak, blank, or unscorable




For this study, the Sub-Area Performance scores for the Science and Technology/Engineering subtest and the Integration of Knowledge and Understanding scores were analyzed.


Key Findings:  Candidate Written Reflections – KIC

Participant responses (N=61) to the written reflection related to their participation in the KIC were evaluated to determine the most common themes that emerged in reference to content and pedagogy. An overwhelming number of participants (N=56) indicated that involvement with the KIC provided them with more science content knowledge. In their reflections on the experience they stated such things as, “I believe the presentations were very effective, because I even learned things that I didn’t know before such as Ingles brand bag holds the least amount of weight compared to Best Buy and Wal-Mart…”

Numerous participants (N=50) also noted that their role in the KIC assisted them with learning how students conduct inquiry. Participants’ anecdotal comments, such as the following, demonstrate this learning: “…I feel that the process of going through putting together an experiment, making predictions, implementing the experiment, and then having to present their findings was a good exercise and definitely good practice for further inquiry….”

Finally, a number of participants (N=44) suggested that the KIC process taught them to assist students with communicating in scientific terms and carrying out investigations using technological design. This was exemplified in participant comments such as:

Participating in the KIC conference will be helpful to me as a future science teacher. I was able to see that students as young as eight and nine are able to follow the science process and they can work through a problem efficiently. For some reason, the age of these students compared to their work surprised me. I wasn’t expecting such good quality work and investigations, and I look forward to trying this out in the classroom.


I found that many of the presentations were relevant to a child’s life. Many students asked, “So, why did you do this? How does this affect your life?” The students that tested hair ties said they wanted to know what hair [tie] would be best to wear at the playground. The students who tested the batteries said they wanted to know which one lasted the longest for their camping trip. The topics listed above are far different from the science projects I did in elementary school. The topics are things that really matter to the students. One may say that knowing what frozen pizza has the most cheese is not a relevant topic, but what I saw at conference was that it was sometimes the process more than the content that was effective. The students were really engaging in scientific thinking and solving everyday problems using scientific methods. I have no doubt that the students will be better equipped to solve real life science problems because of the conference.

Key Findings:  Candidate Written Reflections – Science Olympiad

Participant responses (N=44) to the written reflection related to their participation in the Science Olympiad were evaluated to determine the most common themes that emerged in reference to content and pedagogy. Almost all participants (N=36) wrote that they felt confident that they could make a Science Olympiad event for their own class or grade level that could be used as a science teaching experience. In fact, some plans, such as the one provided by the following participant, were very fully developed:

I would implement a science Olympiad in my classroom by grouping students into two or three and assign 3 events for each to compete in. Students can have a choice of course. It would take place during the end of the year as an all-day event after EOG’s as a fun way to end the school year. I could potentially use a designated spot outside for Newton’s Notions and an empty room/space near-by for overflow of activities. Stations would have to be condensed in order to fit inside my one classroom and furniture rearranged or taken out of the room for additional space.  The groups will have time to prepare similar to the real Science Olympiad. I would bring in volunteers to help with the stations (preferably student teachers, NOT PARENTS) and supervise each event. There would be eight different events inside my classroom.  Each event would consist of 3 activities.

Most participants (N=32) said that their participation in Science Olympiad gave them the skills needed for building a classroom science community around the concept of students possessing common scientific knowledge on a variety of topics. Participant reflections demonstrating this include the following:

I think this experience made a definite impact as far as me feeling like a REAL teacher. This experience really made being a teacher as real as possible. By observing what students are able to do and what they cannot do, it also enhanced by awareness of upper-level elementary developmental/thinking and where they are with that.

Many participants (N=30) specified that their involvement in Science Olympiad provided them with ideas centering on multiple means for assessing student knowledge. One participant suggested:

I also can envision possibly using the Science Olympiad as an assessment or testing tool.  Should the Olympiad be used as a testing tool, the individual grades would be graded, but not shared.  The students could be divided into teams of 4 or 5 students before the testing period. Their test scores would be combined to form a team score.  My guess is that this would encourage a higher level of preparation and group study before the test.

Key Findings:  Standardized Science Olympiad Survey

Given the nature of this survey and because of its standardization to serve the needs of the established Science Olympiad program, the results shown in Table 1 do not reveal much in terms of participant (N=44) acquisition of skills related to content, pedagogy, or professional dispositions. The exception is with regard to the first and last items. Participants had to have the appropriate content knowledge in order to create their event and be fully prepared to lead it, and most participants had to study and learn content information in order to do so. Therefore, the fact that the mean rating for the first item was 4.8 was a good indicator that participants gained content knowledge as a result of their participation as Science Olympiad event leaders. The mean rating of 4.7 for the last item was also encouraging, as it suggested that participants understood the nature of inquiry as a result of their role in Science Olympiad.

Key Findings:  Service Learning Survey

Participant responses (N=78) to the Service Learning Survey were evaluated to determine the items for which participants showed the most growth between their pre- and post-service learning participation in reference to professional dispositions. From the results illustrated in Table 2, four topics emerged: as a result of their participation participants indicated they were more likely to educate themselves on multiple perspectives, use reflections to evaluate their current teaching activities, teach students that the world outside of school is a good source of curriculum, and work to improve collaboration between school and community.     

Key Findings:  Pearson Science and Technology/Engineering Subtest and Integration of Knowledge and Understanding Section

The means of participant results on the Pearson Science and Technology/Engineering Subtest were analyzed by year. For 2014–2015 (N=14) the mean was 2.64. For 2015–2016 (N=12) the mean was 3.08. For 2016–2017 (N=8) the mean was 3.25. The means of participant results on the Pearson Integration of Knowledge and Understanding section were also analyzed. For 2014–2015 (N=14) the mean was 1.86. For 2014–2015 (N=12) the mean was 2.58. For 2016–2017 (N=8) the mean was 2.63. In the 2014–2015 testing year, three participants did not pass the General Curriculum Multi-Subjects subtest the first time they took it. For the 2015–2016 and 2016–2017 testing years the same was true for one participant each year. In all of these instances, for purposes of this study, the first testing attempt was used in figuring the means so that the same level of data was used for all participants.

Discussion and Summary

Two of the goals of this project for participating candidates centered on the acquisition of content knowledge and pedagogical skills necessary for teaching science in their future classrooms. The Key Findings show clearly that these goals were achieved, especially when the results from the instruments used to obtain results in this study are considered together.  Specifically, in the Key Findings section above it is stated that the results from the Standardized Science Olympiad Survey as shown in Table 1 do not say much on their own about participant acquisition of skills related to content, pedagogy, or professional dispositions, with the exception of the first and last items.  The results related to the first item on this survey do, on their own, suggest that participant content knowledge was improved by their participation in the Science Olympiad.  The impact of these results is strengthened by participants’ anecdotal comments on the Candidate Written Reflections for the Science Olympiad which include, “I really enjoyed creating my event for the Science Olympiad and I learned a lot about rocks and minerals and became more informed on the information…” and, “I feel like this was a great first time getting to work with older students. I’ve only worked with kindergarteners so far. I felt confident helping the students because I knew what I was talking about, due to my research on the subject….”  The results related to the last item on the Science Olympiad Survey showed that participants understood the nature of inquiry as a result of their role in Science Olympiad.

Participant reflections support this claim.  As one participant stated:

I definitely want to incorporate my event stations into activities that students could do in my future classroom. Rocks and Minerals can be boring for certain students but having activities to incorporate learning makes it more enjoyable for students. After taking several education classes I have learned through myself that hands-on activities give me a better understanding of information and make learning more enjoyable when you are able to be creative through acting and building things. The students really enjoyed looking at the rocks and minerals I had as samples and the students seemed to be very intrigued.

The Pearson test  components, as a standardized and quantitative measure of participant learning, can also be considered in concert with the Standardized Science Olympiad Survey. As can be seen, the means related to the subtests of of science content and pedagogical knowledge increase each testing year. As described in the Background section, the KIC was terminated by ACS after the Spring 2014 semester. Additionally, the Science Olympiad is held only in Spring semesters. EDUC 322 was offered every semester until Spring 2016 and thereafter was offered only in Spring semesters. Therefore, there were some participants who completed their licensure program and the Pearson test in the 2014–2015 and 2015–2016 testing years without having participated in either one of the EDUC 322 service learning activities. All participants who completed their licensure program and the Pearson test in the 2016–2017 testing year participated in at least the Science Olympiad activity. The increased means on the analyzed Pearson test component strengthen the conclusion that participants’ knowledge regarding both content and pedagogy increased, despite the technicality that EDUC 322 is not “supposed to” teach content. It is the assumption of this researcher that this outcome is due to the practical and engaged work in which participants were involved as part of their service learning.

Another project goal centered on the acquisition of professional dispositions candidates will need to be effective teachers in their future classrooms. The definition of professional dispositions has been widely disputed, as there are many dimensions through which the concept can be delineated. The quest to define dispositions dates back to seminal works, such as those completed by Arthur W. Combs in the 1960s, which sought to determine the dispositions that effective teachers must possess (Wasicsko 1977). There is also great deliberation over whether or not dispositions can be taught, or if they are simply acquired (Cummins and Asempapa 2013). Many researchers, such as Combs and Wasicsko, have developed a series of assessment tools related to pre-service teacher professional dispositions. But again, the tools are contested due to their content, purpose, and validity. Given these debates, many teacher education programs such as that at UNC Asheville provide their own definitions of professional dispositions, and seek to combine formal assessment of them through the use of prescribed tools with performance-based assessment as candidates are engaged in authentic experiences. At UNC Asheville, candidates displaying professional dispositions to a satisfactory degree are defined within the following parameters:

Collaborative teachers who demonstrate awareness of and appreciation for the communities in which they teach and who foster mutually beneficial relationships with the community.

Responsible teachers who exemplify the skills, behaviors, dispositions, and responsibilities expected of members of the teaching profession.

Reflective teachers who maintain a commitment to excellence and to the continuous assessment, adaptation, and improvement of the teaching-learning process.

Humane teachers who value the dignity of every individual and foster a supportive climate of intellectual inquiry, passion for learning, and social justice.

The themes that emerged from the Service Learning Survey results, as described in the Key Findings, show that project participants gained knowledge and skills in the area of acquiring desirable professional dispositions, especially when analyzed in conjunction with participant reflections. For example, one participant noted:

This Science Olympiad experience confirms my compassion and love for children and desire for being a teacher even during some crazy days. It also confirms my desire to help them learn and discover new knowledge while becoming confident in their science skills. This learning experience was really cool to be a part of and I felt like I was doing something truly important to further children’s interest in science and education. I am happy and proud to say that I was able to participate in the Science Olympiad and confidently show the work that my fellow peers and I produced for such a well-known competition. I will always reflect on the experience as a future teacher and use it to influence my decisions as a teacher in a positive way.

The supposition of this researcher is that the field work in which participants were engaged, which can actually be defined as service learning, and the specific Service Learning activities in which they participated can set candidates on the path to civic engagement. Specific civic engagement elements that were realized include the fact that sustainable partnerships were developed, the work was mutually beneficial, and candidates learned to serve a diversity of children. Participants were able to realize the potential for forming partnerships to benefit their future classrooms.  One participant’s reflection showed this clearly, as the participant stated:

If implementation of my own Science Olympiad were not supported in my school or district, I could look to the community and to private industry for support. The concept of the Olympiad is valuable to fostering scientific education and to meeting the current and future needs of the world. Science is life and to neglect it in our children’s education and preparation for life is not an option.

In summary, education in Science, Technology, Engineering, and Math (STEM) competencies is a growing area in terms of career and workplace skills. Interest in this area has to be started in elementary schools in order to ensure that students are not only being introduced to science skills but are also actively engaged in scientific processes and engineering design cycles. The KIC and Science Olympiad were designed to support elementary science standards, and to assist teachers in fostering these skills in their students. The involvement of the pre-service teachers who served as participants in this study and created quality, age-appropriate science challenges for students, is helping to achieve these long-term goals for students and support STEM education.

ASCD (formerly the Association for Supervision and Curriculum Development) is one of the most prominent professional associations in the field of Education. ASCD provides resources, training, research, and programs that emphasize transformational leadership, global engagement, poverty and equity, redefining student success, and teaching and learning (ASCD 2016). “The ASCD defines citizenship as a concern for the rights, responsibilities, and tasks associated with governing. It identifies citizenship competencies as an important component of civic responsibility. These competencies include acquiring and using information, assessing involvement, making decisions and judgments, communicating, cooperating, promoting interests, assigning meaning, and applying citizenship competencies to new situations” (Constitutional Rights Foundation 2000, 4). The participants in this study were introduced to this information toward the beginning of the EDUC 322 course. Then, throughout the course, discussions were held and activities were completed related to teaching candidates how educating students in STEM areas as well as helping them understand the ethical use of science and scientific data are contributing to candidates’ and students’ citizenship, civic engagement, and civic responsibility—both through their current engagement with students and schools and in their future teaching careers. All of this discussion and activity completion is grounded in the framework of strategies for effectively teaching a diversity of students in the public school classroom according to STEM education principles. Additionally, the participants in this project were provided with a responsibility to both teach and learn within a service and civically engaging context. As a result, they were able to learn to teach using discovery, while engaging in discovery learning themselves. Given their self-reflections, it is evident that the participants are excited about and prepared for the prospects of related responsibilities in their future teaching. And, given the results of the measure of student learning, each group of participants is entering the classroom more prepared in terms of their content and pedagogical knowledge than the one before it.

About the Author

Kim Brown is an Associate Professor and the Chairperson of the Department of Education at the University of North Carolina Asheville.  Kim teaches numerous licensure courses, including Inquiry-Based Science Instruction for candidates seeking elementary licensure.  For her curricular and service work in this course, Kim was named a University SENCER Fellow.  Kim has been very involved in work related to the University of North Carolina Asheville’s liberal arts model, serving as the chairperson of the university’s Integrative Liberal Studies Oversight Committee and the university’s representative on the state-level General Education Council.  Kim was the university’s recipient of the 2014 Distinguished Service Award.


ASCD. 2016. “ASCD.” (accessed June 8, 2017).

Constitutional Rights Foundation. 2000. “Fostering Civic Responsibility through Service Learning.” Fostering Civic Responsibility 8 (1): 1–15.

Cummins, L., and B. Asempapa. 2013. “Fostering Teacher Candidate Dispositions in Teacher Education Programs.” Journal of the Scholarship of Teaching and Learning 13 (3): 99–119.

Davis, B.M., and D. Buttafuso. 1994. “A Case for the Small Liberal Arts Colleges and the Preparation of Teachers.” Journal of Teacher Education 45 (3): 229–235.

Wasicsko, M.M. 1977. Assessing Educator Dispositions: A Perceptual Psychological Approach. (accessed December 1, 2016).

Download (PDF, 320KB)


The Draw-an-Ecosystem Task as an Assessment Tool in Environmental Science Education

Robert M. Sanford, University of Southern Maine
Joseph K. Staples, University of Southern Maine
Sarah A. Snowman, University of Southern Maine


Environmental science is a broad, interdisciplinary field integrating aspects of biology, chemistry, earth science, geology, and social sciences. Both holistic and reductionist, environmental science plays an increasing role in inquiry into the world around us and in efforts to manage society and promote sustainability. Mastery of basic science concepts and reasoning are therefore necessary for students to understand the interactions of different components in an environmental system.

How do we identify and assess the learning that occurs in introductory environmental science courses? How do we determine whether students understand the concept of biogeochemical cycling (or “nutrient cycling”) and know how to analyze it scientifically? Assessment of environmental science learning can be achieved through the use of pre- and post-testing, but of what type and nature?

Physics, chemistry, biology, and other disciplines have standardized pre- and post-tests, for example Energy Concept Inventory, Energy Concept Surveys; Force Concept Inventory (Hestenes et al. 1992); the Geoscience Content Inventory  (Libarkin and Anderson 2005); the Mechanics Baseline Test; Biology Attitudes, Skills, & Knowledge Survey (BASKS); and the Chemistry Concept Inventory (Banta et al. 1996; Walvoord and Anderson 1998). Broad science knowledge assessments also exist, notably the Views About Science Survey (Haloun and Hestenes 1998). Some academic institutions have developed their own general science literacy assessment tool for incoming freshmen (e.g., the University of Pennsylvania [Waldron et al. 2001]).  The literature abounds with information on science literacy. The American Association for the Advancement of Science (AAAS) and the National Science Teachers Association (NSTA) are leaders in developing benchmarks for scientific literacy (AAAS 1993;

Perhaps the closest standardized testing instrument for environmental science is the Student Ecology Assessment (SEA). Lisowski and Disinger (1991) use SEA to focus on ecology concepts. The SEA consists of 40 items in eight concept clusters; items progress from concrete to abstract, from familiar to unfamiliar, and from fact-based (simple recall) to higher-order thinking questions. Although developed principally for testing understanding of trophic ecology (plant-animal feeding relationships), this instrument can be used in most ecology or environmental science classes, even though it does not address all aspects of environmental science (for example, earth science, waste management, public policy).

The Environmental Literacy Council provides an on-line test bank that can be used for assessment (  Results of this and other instruments suggest that the average person’s environmental knowledge is not as strong as he or she thinks (Robinson and Crowther 2001). Environmental knowledge assessment may help us to determine what additional learning needs to be done in creating an environmentally literate citizenry—an important public policy task (Bowers 1996).  However, a major reason for assessing environmental knowledge is to improve teaching. If we can assess how students conceptualize an ecosystem at the start of a course, then we can measure the difference at the end of the course. Additionally, understanding what knowledge they possess at the start of a course will help us expand their knowledge base in a manner tailored to their initial understandings and their needs.

The challenge lies in deriving a rapid assessment tool that will help determine abilities to conceptualize and that also has comparative and predictive value.  It is quite common in environmental science courses to ask students to draw an ecosystem—it can be done as an exam question, as homework, or as an in-class project.  Virtually all environmental science textbooks contain illustrations of ecosystems.  An environmental laboratory manual we frequently use (Wagner and Sanford 2010) asks students to draw an ecosystem diagram as one of the assignments. But what about examining how the students’ drawings illustrate growth in knowledge and understanding—their ability to use knowledge gained and to communicate ecological relationships in a model?  We needed an instrument that provided immediate information, could be contained on one page, would not take a lot of class time, and that did not look like a test. The draw-an-ecosystem instrument meets those criteria, but there is a price: the difficulty of quantifying and comparing the drawings. It seemed a worthwhile challenge to work those bugs out, and even if that proved to be impossible, the students themselves could see the increased ecological sophistication of their drawings and would experience positive feedback from the change.

The Draw-an-Ecosystem Approach

Figure 1: A representative ecosystem drawing from the first day of class

Our approach is to use a pre-test and post-test in which students draw and label an ecosystem, showing interactions, terms, and concepts (Figure 1 and Figure 2).  The assignment is open-ended. We hand out a page with a blank square on it and the following directions:

Date_______. Course ________. Please draw an ecosystem in the space below. It can be any ecosystem. Label ecosystem processes and concepts in your diagram. Take about 15 or 20 minutes. This will not be graded, it isn’t an art assignment, and the results will be kept anonymous.

We tried out this assessment in our graduate summer course in environmental science for sixth–eighth grade teachers (even short-term courses can produce a change in environmental knowledge according to Bogner and Wiseman [2004]) and in our Introduction to Environmental Science course.  We developed a rubric to evaluate and score the pre- and post-test ecosystem diagrams drawn by students.  The rubric included eight categories, each with a 0–3 score, where 0 represented no display of that category and 3 represents a comprehensive response. The categories, labeled A-H, cover ecosystem aspects (listed below). Certainly, not all eight categories are equal, nor should they be equally rated or represented; however, since we are examining pre- and post-course conceptualization of ecosystems, the comparative value of the scoring remains, and we decided it was reasonable to sum the category scores for a final score. Accordingly, the maximum possible score was 24. The scores were then compiled and analyzed to determine whether there was a statistically significant difference in pre- and post-test scoring.

Figure 2: Typical drawing of an ecosystem at the end of a semester-long environmental science course

To interpret the student ecosystem diagrams, we examine the following factors:

  • Presentation of the different spheres (hydrosphere, atmosphere, biosphere, geosphere, and cultural sphere)
  • Proportional representation of species and communities
  • Recognition of multiple forms of habitat and niche
  • Biodiversity
  • Exotic/invasive species
  • Terminology
  • Food chain/web
  • Recognition of scale (micro through macro)
  • Biogeochemical (nutrient) cycles
  • Earth system processes
  • Energy input and throughput
  • Positive and negative feedback mechanisms
  • Biological and abiotic interactions and exchanges
  • Driving forces for change and stability (dynamics)

Initially we used the above factors as a guide in interpreting the drawings and comparing the pre-test and post-test drawings for each student—we did not compare one student’s work with another. However, if the ecosystem test can become a valid and reliable standardized assessment, then comparison makes sense and will inform how an entire course makes a difference in student learning rather than just the progress of an individual student.  Accordingly, we developed a scoring rubric (Table 1).

In determining the categories and weights for each scoring rubric, we consulted three other environmental science faculty with experience in teaching an introductory environmental science course. We sought a scale for which both beginners and professionals would achieve measurably distinct scores. To ensure objectivity, we scored multiple examples before settling on the final rubric elements and weights.  This is similar to the norming approach used by the College Board in scoring Advanced Placement (AP) Environmental Science exams. The final scores reflect a student’s holistic understanding of ecosystems.  The maximum score for the pre- and post-test is the same, 3 points x 8 categories = 24.  Analysis of pre- and post-course test scores using a Student’s t-test for independence, with separate variance estimates for pre-test and post-test groups, was conducted using Statistica v.10 (StatSoft, Tulsa, OK).  Analysis revealed a significant enhancement of students’ abilities to communicate their understanding of ecological concepts (t = -10.77, df = 364, p < 0.001) (Figure 3).  We also tested the scoring system on a small group of workshop participants at the New England Environmental Education Alliance conference (October 2014). Participants included members of their state’s respective environmental education association, plus  a mixture of grade school teachers and non-formal educators (with environmental education equivalent to or higher than that achieved by the post-course group of students).  The scores by these educators averaged 13 and ranged between 10 and 15.

Figure 3: Draw-an-Ecosystem Rubric Test Scores. Average test scores with SE (bars) for freshmen/transfer undergraduate students in first semester Environmental Science. Pre-test (n=297, mean=4.7) and post-test (n=60, mean=8.6).



The draw-an-ecosystem test provides an open-ended but structure-bounded means to gauge a person’s understanding about ecosystems. We measured change between the first week of a semester-long environmental science course (four credits of lecture and lab) and the last week. The change showed an approximate doubling of scores. The drawings provide clues to where the students are for their starting points and provide a way to indicate possible misconceptions about science or the environment—misconceptions that may need to be cleared up for proper learning. Thus, the drawings can be a useful diagnostic tool for both the student and the teacher. They may also give insight into geographical, cultural, or social biases. For example, many ecosystem drawings were of ponds, not surprising given the water-rich environment of Maine.  None of the over 300 drawings were of desert ecosystems, yet such might be conceptually more common for people from an arid region such as the Southwest.  Another aspect of the sample ecosystem drawings is that they tend to be common rather than exotic, leading one to wonder whether we care for what we do not know, or if perhaps the opposite is true—a “familiarity breeds contempt” scenario in which the vernacular environment is seen as less important due to its commonality. A related question is whether or not the ecosystems selected for portrayal change as a result of education. Not only might students think more deeply about ecosystems, but perhaps they are more aware of and value the greater variety of them.

Another benefit of the ecosystem drawing is that it adds another dimension to the learning process. It provides a different way of assimilating and processing information, although according to our sample, artists tend to score about the same as those with fewer artistic skills, suggesting that perhaps a drawing assignment validates their supposedly lesser artistic abilities. Certainly, an exercise that incorporates multiple modes of representation, expression, and engagement—such as drawing and writing—fits better with a Universal Design for Learning (UDL) approach; these modes are the three principles of UDL (Burgstahler and Cory 2008; Rose et al. 2005).

In the future, we may seek a way to reduce the large number of categories in the scoring system, especially if the test is to be used with younger age groups. We should also attain a more comprehensive method of assessing inter-rater agreement for scoring the drawings. We may also explore use of the ecosystem drawings as discussion starters for peer evaluation and collaborative learning. Ecosystem concepts seem to be a powerful way of capturing and reflecting student thinking about environmental settings as dynamic systems.


Maine Mathematics and Science Teaching Excellence Collaborative (MMSTEC), an NSF-funded program, inspired the initial idea of this paper. Professors Jeff Beaudry, Sarah Darhower, Bob Kuech, Travis Wagner, and Karen Wilson provided insight.

About the Authors

Robert M. Sanford is Professor and Chair of Environmental Science and Policy at the University of Southern Maine. He is a SENCER Fellow and a co-director of SCI New England.

Joseph K. Staples teaches in the Department of Environmental Science and Policy at the University of Southern Maine. He was recently appointed a SENCER Fellow.

Sarah A. Snowman works at L.L. Bean and is a recent graduate of the University of Southern Maine, where she majored in Business and minored in Environmental Sustainability.


American Association for the Advancement of Science (AAAS). 1993. Benchmarks for Scientific Literacy. Oxford: Oxford University Press.

Banta, T.W., J.P. Lund, K.E. Black, and Frances W. Oblander, eds. 1996. Assessment in Practice. San Francisco: Jossey-Bass Publishers.

Bogner, F.X., and M. Wiseman. 2004. “Outdoor Ecology Education and Pupils’ Environmental Perception in Preservation and Utilization.” Science Education International 15 (1): 27–48.

Bowers, C.A. 1996. “The Cultural Dimensions of Ecological Literacy.” Journal of Environmental Education 27 (2): 5–11.

Burgstahler, S.E., and R.C. Cory. 2008. Universal Design in Higher Education: From Principles to Practice. Cambridge, MA: Harvard Education Press.

Environmental Literacy Council. Environmental Science Testbank. (accessed November 30, 2016).

Halloun, I., and D. Hestenes. 1998. “Interpreting VASS Dimensions and Profiles for Physics Students.” Science and Education 7 (6): 553–577.

Hestenes, D., M. Wells, and G. Swackhamer. 1992. “Force Concept Inventory.” The Physics Teacher 30: 141–158.

Libarkin, J.C., and S.W. Anderson. 2005. “Assessment of Learning in Entry-Level Geoscience Courses: Results from the Geoscience Concept Inventory.” Journal of Geoscience Education 53: 394–201.

Lisowski, M., and J.F. Disinger. 1991. “The Effect of Field-Based Instruction on Student Understandings of Ecological Concepts.” The Journal of Environmental Education 23 (1): 19–23.

Nuhfer, E.B., and D. Knipp. 2006. “The Use of a Knowledge Survey as an Indicator of Student Learning in an Introductory Biology Course.” Life Science Education 5 (4): 313–314.

Robinson, M., and D. Crowther. 2001. “Environmental Science Literacy in Science Education, Biology & Chemistry Majors.”   The American Biology Teacher 63 (1):9–14.

Rose, D.H., A. Meyer, and C. Hitchcock, eds. 2005. The Universally Designed Classroom: Accessible Curriculum and Digital Technologies. Cambridge, MA: Harvard University Press.

Maine Mathematics and Science Teaching Excellence Collaborative (MMSTEC).

Sexton, J.M., M. Viney, N. Kellogg, and P. Kennedy. 2005. “Alternative Assessment Method to Evaluate Middle and High School Teachers’ Understanding of Ecosystems.” Poster presented at the international conference for the Association for Education of Teachers in Science, Colorado Springs, CO.

Wagner, T., and R. Sanford. 2010. Environmental Science: Active Learning Laboratories and Applied Problem Sets. 2nd ed. New York: Wiley & Sons.

Waldron, I., K. Peterman, and P. Allison. 2001. Science Survey for Evaluating Scientific Literacy at the University Level. University of Pennsylvania. (

Walvoord, B.E., and V.J. Anderson. 1998. Effective Grading: A Tool for Learning and Assessment. San Francisco: Jossey-Bass Publishers.

Download (PDF, 716KB)

Geek Sneaks: Incorporating Science Education into the Moviegoing Experience

Dan Mushalko, WCBE 90.5
Johnny DiLoretto, Gateway Film Center
Katherine R. O’Brien, Ohio State University
Robert E. Pyatt, Nationwide Children’s Hospital and The Ohio State University


There are many published examples of strategies for using movies in science education, ranging from individual activities within a class to complete courses like “The Biology of Jurassic Park” at Hood College or “The Physics of Film” at the University of Central Florida (Borgwald and Schreiner 1994; Dubeck et al. 1988; Dubeck et al. 1995; Firooznia 2006). However, all of these strategies employ the use of the film within a formal classroom setting. This paper describes a collaborative program connecting hands-on science activities and new release motion pictures for informal science education in the innovative setting of a movie theater.

Initial Development

The Gateway Film Center (GFC) is a not-for-profit theater which includes eight screens, an art gallery, an upper level bar/ lounge area, a large lobby, and a lower level nautical-themed restaurant.  In 2015, the theater was recognized by the Sundance Art House Project as an independent theater of excellence based on “high standards including: quality programming, deep involvement with their local communities, strong financial standing, and recognition from their peers and their communities”(Madden 2015).

The GFC initially began experimenting with science-related supplemental programming through discussions following showings of the film Gravity and the TV series Cosmos in 2013. Based on the success of those events and a love of science by the GFC staff, the theater was interested in broadening that concept to a wider range of new release films. Beginning in 2014, we formed a collaboration with the GFC to develop supplemental science programming related to and in support of films shown at the theater. The mission of the Gateway Film Center includes an educational component, but this traditionally had referred to cultivating film appreciation, movie criticism, and production skills.  However, they also promoted their facility as a “learning lab” to promote curiosity and the seeking of new knowledge. We felt that this inspiring philosophy could also apply to science education and the use of the theater as an informal learning environment.  This initiative was founded on the goals of (1) integrating science engagement into a unique part of popular culture, (2) exposing moviegoers to real scientists and real science questions, (3) facilitating learning in an informal environment.

During the 2014 summer blockbuster season, we spearheaded a series of panel discussions hosted by ourselves and other scientists from our immediate area in conjunction with three new films.  As one journalist noted in a piece to promote these events, “You can’t spell ‘science fiction’ without ‘science'” (Madden 2014). Discussions were held after the 7 p.m. show on consecutive Fridays during the month of May and included topics such as “The Monstrosity of Science in Film” for the movie Godzilla and “The Science of Mutation” for X-Men: Days of Future Past (Figure 1).  The series concluded with a discussion on the relative importance of scientific fact or narrative development in motion pictures.  All panel discussions were held in the upper level lounge area of the theater and announced at the end of the film screening to encourage people to stay afterwards and attend. Most seats in the lounge area were usually filled for each panel and attendees were typically adults. Discussions were lively and included both expert commentary and audience questions to allow individuals the opportunity to directly interact with scientists around topics they were familiar with (e.g., comic books, superheroes, and monsters). When possible, we also supplemented panels with interactive displays such as a collection of insects for “The Hero: Fact vs. Fiction” discussion for the film The Amazing Spiderman 2.

Science and the Geek Sneaks

While the panel discussion format had proven successful, we wanted to develop science programming that was more interactive, broadly appealing to younger audiences/ families, and would extend across a larger range of time/ movie show times.  We expanded the scope of our efforts and began developing science-related content for the Geek Sneak series at the GFC.  Geek Sneaks are advertised as “the ultimate geeking-out atmosphere: parties, unique pre-show entertainment (think behind the scenes and rare footage) and themed drink and dining specials, with a group that loves the movie as much as you do!” Geek Sneaks are held the Thursday before a film opens nationwide and consist of multiple showings of that movie during the evening hours. As promotion for the Geek Sneaks highlighted special pre-show entertainment, this seemed like an excellent environment in which to incorporate an informal science education component.

Science activities related to each film are designed to be of short duration (completed in roughly ten minutes or less) and suitable for small groups of people (the typical sizes commonly attending movies). All activities are designed to be hands-on and focused around science content related to themes in the associated film. The GFC hosts multiple Geek Sneak programs throughout the year, but only those movies with science-related premises were deemed suitable for related science activities. In addition to our work, the GFC also arranged other science guests for some Geek Sneaks to further develop the educational message and promotion around some films.

The GFC has eight screens, and Geek Sneak science activities were typically hosted in the lobby area, which allowed them to be accessible to all moviegoers and not just those attending the Geek Sneak.  For example, the Marvel Studios movie Ant-Man opened in June of 2015 and tells the story of a superhero who has the ability to shrink in scale thanks to a super suit created by his scientist mentor. As a superhero fantasy, there are many components of the story that lack scientific accuracy, such as the suit’s implausible ability to shrink a person to insect size, Ant-Man’s superhuman strength, and the ability of a human to go sub-atomic and survive in the quantum realm at the film’s conclusion. However with a plot and hero based at least in part on real science principles, we felt that this movie offered an excellent opportunity to couple some related science activities. Two such activities were set up in the theater lobby from 6 p.m. to 8 p.m. the evening of the Geek Sneak so that they were prominently visible to all theatergoers. The science activities for Ant-Man included one focused on air pressure as a mechanism to shrink or enlarge marshmallows using a hand pump or a vacuum chamber, as this most directly connects with the movie’s plot and the hero’s abilities (Figures 2 and 3). Each activity was accompanied by basic background information on the topic, which in this case included a brief definition of air pressure, a description of the composition of marshmallows, and a short discussion of how changing pressure makes them grow or shrink. Participants were also given markers and encouraged to create their own Ant-Man character with the marshmallow before experimentation. Additionally an entomologist and representatives from a local conservatory were also invited to present displays on ants and insects respectively.

For the film Jurassic World, we conducted DNA extractions from wheat germ so that moviegoers could take a sample of DNA they had processed themselves into the theater for the show, and a display of fossils was presented by the Ohio State University Orton Geological Museum including an impressive T-Rex skull. For the film Fantastic Four, science activities included light refraction experiments to mimic the powers of the Invisible Woman, and melting a small piece of the metal gallium (melting temperature 85.58°F) in the hand to mimic the heat of the Human Torch. For Star Wars: The Force Awakens, activities based around the Force focused on magnetism and static electricity (Figures 4 and 5). We have continued to develop film-related science activities with the GFC and have adopted a hybrid approach based on our experiences. For films with broader appeal that are more likely to pull in family audiences, we continue to develop hands-on, film-related science activities for Geek Sneaks associated with those movies. For the film X-Men Apocalypse we presented activities allowing theatergoers to search the human genome using a computer or test their own genetics of bitter taste [Figure 6]. For the film Star Trek Beyond, attendees could examine the warping of space or explore the International Space Station through a NASA computer simulation (Figure 7). Most recently, for the release of Shin Godzilla we showed the random nature of radioactive half-life using M&Ms and demonstrated the use of a Geiger counter with common household radioactive items.

For documentaries or other films aimed at more adult audiences, we have moved to hosting panel discussions in the theater’s restaurant area to continue conversations about film-related topics after the film has ended. For example, recent screenings of the documentaries The Last Man on the Moon and Science, Sex and the Ladies were followed by lively discussions on the future of manned flight and female sexuality. While documentaries typically do not have the same appeal as Hollywood blockbusters, we find many adult audience members are more interested in digging into the respective topics in greater detail through discussion sessions following the showings.

Audience Reactions and Challenges

Moviegoers have been generally positive towards this unusual science programming, and we frequently receive comments like “That’s really cool!” or “Why do you guys do this?” We see individuals coming to Geek Sneaks and checking in with us to see what new science activities we have planned for that film. For Batman v Superman: Dawn of Justice, we conducted “super” experiments to see how a person’s grip strength and total lung capacity would compare to Superman’s given some of the feats we’ve seen him demonstrate in movies. We also recorded both measures on a large board for all participants as a comparison across Geek Sneak attendees that evening. We found that not only did moviegoers enjoy these activities, but some came back repeatedly throughout the evening to check their scores compared to others. A few even asked to repeat the activities to try to improve their scores, allowing us to discuss ways they could do that long term.  We would also see one individual from a group complete the activities and then go and bring their friends over to try it as well. Most encouraging, however, is seeing groups who have completed the activities walk away discussing their results, which serves as further reinforcement of those concepts. We love watching informal science learning happening in a movie theater. 

Given that the reason people are at the GFC is to see a movie, we try to be respectful of their time as they interact with us.  We don’t want to make anyone late for a movie. If attendees decline to participate, we graciously thank them for looking and comment that we hope they enjoy their movie. When individuals do participate, we often will ask when their show time is and modify our presentation accordingly if their time is limited.  The popularity of a given movie directly relates to the number of attendees we will see for a Geek Sneak. For a film with reasonable popularity like Batman v Superman: Dawn of Justice, we saw forty people participating in at least one of the activities during the roughly two hours we were present for the Geek Sneak.

The participation of moviegoers was observed during the American premiere of Shin Godzilla. Two activities were run simultaneously for 45 minutes, and 34 moviegoers participated in at least one of the activities; most people did both. Participation was measured if an individual spent at least one minute on an activity. Gender (male; female) and age (child; teenager; adult) were recorded, as perceived by the observer, and each participant was also asked what movie they came to see as part of the demonstrators being cognizant of movie start times. Participation was scored by counting the unique ways moviegoers participated, including if the participant asked a question, answered a question, participated in the hands-on activity, watched the Geiger counter demonstration, helped another participant with the hands-on activity, or shared a story with the demonstrators. Participation scores ranged from a 1 (for someone who, for example, just watched an activity) to a 5 (for someone who, for example, actively participated). An example of a high participation score is the first female participant. She saw another movie but was interested in the activity because her mother is a statistician. While at the table, participant 1 asked and answered questions, shared her mother’s occupation, observed the Geiger counter and participated in the hands-on activity. The average level of participation for a participant was 2.5, indicating that they engaged in between two and three unique activity modalities. 

Most participants were adults (82%), possibly due to the lateness of the show, as well as the movie being in Japanese with English subtitles, which skews viewership based on reading comprehension levels. Furthermore, most participants were men (70%); however, this seemed representative of the gender skew of moviegoers who came for the Godzilla movie. Of the 10 women who participated, three (30%) women came to Gateway to view another movie, while of the 24 men only four (16%) came to see a movie other than Godzilla. There was no statistical difference between how much men and women participated, though they participated in different ways. Men were more likely to be the first to start the hands-on activity, ask a question, or share a story, while women were more likely to answer a question or help with the hands-on activity.


A recent report by a committee convened through the National Research Council described the venues of informal learning as occurring in the context of three areas: everyday (life) experiences such as personal hobbies, designed settings like museums, and after-school and adult programs (Bell et al. 2009). Studies by Falk et al. have shown that the public has a broad interest in science, and a 2007 survey identified the “lifelong predominantly free choice nature of science learning” as the primary method of science education (Falk et al. 2001; Falk et al. 2007). Based on their results, the authors then recommend “a more holistic approach to science education” which “integrates school, work, and leisure time learning experiences” (Falk et al. 2007, 464). While extensive research has focused on designed settings such as museums or planetariums and informal programs such as out-of-school clubs and citizen science projects, there is considerably less information about informal science education in everyday settings.   

A recent publication by Bultitude and Sardo described a new subclass of everyday settings they termed as “generic,” which included locations designed primarily for leisure activities, where participants have chosen to be, but for reasons unrelated to science or science learning (Bultitude and Sardo 2012). In their article, the authors describe three such everyday settings including a collective of science communicators called Guerilla Science presenting at a music festival, a physics demonstration set up at a garden festival, and a biological survey (Bioblitz) conducted at a large country park. Through interviews and structured observations, the authors found that attendees of these “generic” events valued “audience participation opportunities and hands-on nature of some activities.” The authors subsequently concluded that “holding activities within a relaxed but not habitual environment, where participants are at their leisure, offers clear advantages in reaching non-standard audiences”(Bultitude and Sardo 2012, 32). Our experiences using the innovative setting of a movie theater as one such “generic” everyday setting for informal science education would confirm this. While we have only anecdotal responses from participants, we have observed that hands-on activities and discussions in the theater stoked curiosity and promoted science learning in theatergoers. Especially following panel discussions, we observed that participants seemed to connect to a movie’s science content in more personal ways. Finally, these science activities and discussions were excellent material for the Gateway Film Center to use in advertising and promotions which solidified the collaborative nature of this program.

At a recent Geek Sneak during the  summer of 2016, we were approached by an attendee who was excited to talk to us. He had attended a previous Geek Sneak for X-Men Apocalypse and had participated in the activity around bitter taste genetics and the TAS2R38 gene. He excitedly told us that since that film he’d read a couple of articles which mentioned the TAS2R38 gene; he had remembered the gene from our activity and had gone to look up additional information on it himself. While it is only a single piece of anecdotal evidence, this is exactly the impact we are aiming for.

About the Authors

Dan Mushalko is General Manager, Operations and Program Director at the National Public Radio affiliate 90.5 WCBE, a division of the Columbus City Schools District. He is also the host of “The Amazing Science Emporium,” which mixes music, puns, and other offbeat elements to teach science. Mr. Mushalko holds several journalism and education awards, including the American Association for the Advancement of Science’s Science Journalism Award. He focuses his avocational activities on education, teaching writing at Thurber House (a non-profit literary center) and conducting in-school science demonstrations. 

Johnny DiLoretto is a longtime Columbus media personality and performer. Johnny graduated from The Ohio State University with a Bachelor of Arts degree in English and Film Studies in 1997 and began his career in print in 1998 as a film critic for The Other Paper. He transitioned to television in 2002 when he became the entertainment reporter, film and food critic for WSYX ABC 6 and WTTE Fox 28.  From 2012 to 2016, he was the director of communications at the Gateway Film Center, an independent, non-profit movie theater dedicated to the art of cinema and its transformational and educational potential.

Katherine R. O’Brien is a contractor with the Center for Life Science Education at the Ohio State University. She received her M.A. from Clark University and her Ph.D. from the University of Pennsylvania.    Dr. O’Brien supports increasing diversity in STEM by developing connections between universities, the arts, museums, and the communities they serve. 

Robert E. Pyatt is an Associate Director of the Cytogenetics and Molecular Genetics Laboratories at Nationwide Children’s Hospital and an Associate Professor-Clinical in the Department of Pathology at The Ohio State University. He received his M.S. from Purdue University and his Ph.D. from The Ohio State University.  Dr Pyatt is passionate about science education, especially developing new avenues of informal delivery. 


Bell, P.B., B. Lewenstein, A.W. Shouse, and M.A. Feder. 2009. Learning Science in Informal Environments: People, Places, and Pursuits. Washington, DC: National Academies Press.

Borgwald, J.M., and S. Schreiner. 1994. “Science and the Movies: The Good, the Bad, and the Ugly: A Novel Interdisciplinary Course for Teaching Science to Nonscience Majors.” Journal of College Science Teaching 23 (6): 367–371. 

Bultitude K., and A.M. Sardo. 2012. “Leisure and Pleasure: Science Events in Unusual Places.” International Journal of Science Education 34: 2775–2795. 

Dubeck, L.W., S.E. Moshier, and J.E. Boss. 1988. “Science in Cinema: Teaching Science Fact through Science Fiction Films.” New York: Teachers College Press.

Dubeck, L.W., S.E. Moshier, and J.E. Boss. 1995. “Using Science Fiction Films to Teach Science at the College Level.” Journal of College Science Teaching 25 (1): 46–50.

Falk, J.H., P. Brooks, and R. Amin. 2001. Free Choice Science Education: How We Learn Outside of School. New York: Teachers College Press.

Falk, J.H., M. Storksdieck, and L.D. Dirrking. 2007 “Investigating Public Science Interest and Understanding: Evidence for the Importance of Free-Choice Learning.” Public Understanding of Science 16: 455–469.    

Firooznia, F. 2006. “Giant Ants and Walking Plants: Using Science Fiction to Teach a Writing Intensive, Lab-Based Biology Class for Nonmajors.” Journal of College Science Teaching 35 (5): 26–31.

Gateway Film Center. n.d. “Education.” (accessed December 17, 2016).

Gateway Film Center. n.d. “Geek Sneaks.” (accessed December 17, 2016).

Madden, H. 2014. “Discuss Science and Superheroes at Gateway Film Center.” (accessed December 17, 2016).

Madden, H. 2015. “Gateway Film Center Wins Sundance Honor.” (accessed December 17, 2016).

Download (PDF, 2.51MB)

A Research Project in Inorganic Chemistry on the Flint Water Crisis

Stephen G. Prilliman, Oklahoma City University


Students in an introductory inorganic chemistry course conducted a semester-long literature-based research project on the then-ongoing drinking water crisis in Flint, Michigan, USA. Students presented their findings at a poster session that was open to the public. The implications of choosing an ongoing news story as a focus and the ability for such a project to shape the curriculum in a broad introductory course is discussed.


If organic chemistry is the study of carbon, inorganic chemistry is the study of all the other elements on the periodic table. The breadth of possible topics in an undergraduate introductory inorganic chemistry course can thus present a challenge for the instructor. In fact, the topics actually taught in inorganic chemistry vary substantially from one institution to another (Raker et al. 2015). At Oklahoma City University, Inorganic Chemistry is a one-semester, lecture-only course for upper-level chemistry and biochemistry majors. The course covers orbitals, periodic trends, bonding, symmetry, transition metal complexes, acid-base chemistry, redox chemistry, and solid state chemistry.

The addition of a research project with societal implications to this course came about because of the demise of another course. For several years students in our college were required to take a senior seminar in which they would investigate and write policy proposals for problems facing humanity in the 21st century, e.g., pollution or climate change. The course proved difficult to staff, and departments were instead asked to offer upper-level courses with a strong research component. However, this research project, initially an “add-on,” became central to the course experience.

A number of factors made the Flint crisis a good choice for an inorganic chemistry research project, including

  • A sense of immediacy due to the ongoing nature of the crisis
  • Strong curricular overlap
  • Availability of information from journalistic sources
  • Availability of independent data from the Flint Water Study (2016)
  • Strong social justice aspect
  • A story impacting a diverse urban area not unlike our own

Several other recent chemistry-related events were considered, including the explosion at a fertilizer plant in West, Texas (Chemical Safety Board 2015) and the Gold King Mine contaminated water release impacting the Navajo reservation (Environmental Protection Agency 2015), but neither had all of the advantages listed above. Local cases were also considered. The abandoned Tar Creek mine in far northwest Oklahoma (Barringer 2004) lacked the timeliness of Flint, while the recent earthquakes in Oklahoma stemming from wastewater injection at well sites required knowledge deemed to be beyond the scope of the course.

Overview of the Flint Water Crisis

In 2012, the city of Flint began investigating cheaper alternatives to its water purchasing agreement with Detroit. At the time, Flint was under the administration of a state-appointed emergency manager due to ongoing fiscal difficulties. Flint officials decided to join a regional effort to construct a treatment plant on Lake Huron by 2016 with an anticipated savings of $200 million over 25 years (Kennedy 2016). In the interim, the city would  treat its own water from the Flint River beginning in April, 2014. Residents quickly complained of yellow and brown water. The city had trouble regulating, alternately, E. coli bacteria and chlorination by-products. Corrosion found on newly made parts prompted the General Motors engine plant in Flint to discontinue use of city water in October 2014. In January 2015, the first elevated lead levels in drinking water were found. Michigan state officials dismissed independent results showing elevated lead levels until October 2015, when residents were told to stop using Flint city water for drinking, cooking, or bathing. A more thorough overview of the crisis can be found elsewhere (Flint Water Advisory Task Force 2016; Kennedy 2016; Wisely and Erb 2015).

Mechanics of the Project

Students in the inorganic chemistry course were assigned to research and present a poster on some aspect of the Flint water crisis. Learning objectives for the project are listed in Table 1. Posters were chosen as the final research product so that students could present their research in a forum that encouraged community engagement and discussion. A poster session would also give students an authentic experience in explaining their findings to both scientists and non-scientists who might be in attendance.

In the second week of the semester the students read a newspaper article (Wisely and Erb 2015) and a trade journal article (Torrice 2016) in class. Students were given two additional days in class for research and consultation but were mostly expected to complete their research on their own. Halfway through the semester students were required to turn in a summary of their research up to that point.


Students’ topics fell into two broad categories that we referred to as “people” and “pipes.” Most students in the “people” group focused on the mechanism of lead toxicity. Two students examined biological pathways in which lead ions displace calcium ions. Another looked at using the common ligand molecule EDTA as a treatment for acute lead exposure. Those focusing on “pipes” looked at the chlorination byproducts acting as oxidizing agents that converted lead metal to soluble lead ions. Several others focused on whether treating water with phosphates might have prevented pipe corrosion by creating and maintaining a solid layer of iron/lead phosphate on the interior of city and residential pipes.

Each of the thirteen students in the class presented a poster at the end-of-semester poster session (Figure 1). In addition to students, faculty, and staff who attended, a reporter from the local independent weekly newspaper, the Oklahoma Gazette, also attended, resulting in an article in her newspaper (Estes, 2016) and providing students an authentic experience in explaining science to the public.


There were two unplanned benefits of this project. First, many of the students addressed the social justice aspect of the crisis. While students had been instructed to be sensitive to the fact that real people were affected, many decided that it was important to discuss the injustice of the situation. One student’s poster prominently displayed a quote by Mayor Dayne Walling declaring the Flint River “good, pure drinking water, and it’s right in our backyard.” Another student expressed to the Oklahoma Gazette reporter her incredulousness upon realizing that city and state officials “were really letting this happen to people.”

Another unplanned benefit was how the project motivated study and reinforced course material. Student research projects discussed redox chemistry, electrochemistry, chelation, and periodicity. This made it easier to motivate students to study these subjects and gave the course a sense of coherence. In this way, the project, which was originally an addition, became a focal point for the entire course. As one student put it, “Once we found the water reports and the results had shown a high chlorine residue, I felt like the chemistry became real for me.”

We missed one opportunity when we failed to reach out to Oklahoma City community members with specialized knowledge in water treatment and water quality to add a local dimension to the project. Although the students showed a remarkable capacity to empathize with the citizens of Flint, a local connection would have added greater relevancy to their research. Providing students a rubric for the poster at the beginning of the semester and additional checkpoints throughout the semester would have ensured that expectations were better understood. A formal method of assessing students’ perception of learning during the project (rather than an assessment for the entire course) should have been established also.


The project, which focused on a current news topic and culminated in a public poster session, presented students with a unique opportunity to experience the need for expert analysis on an ongoing news event. The chemistry was neither simple to understand nor to explain. Students needed to integrate their scientific knowledge with information gleaned from news reports to explain the salient chemistry to both scientists and non-scientists. Students were thus provided with an experience that lies outside the norm of most undergraduate programs and which might not have been possible with a more traditional case study or research project.


Thank you to the students of the course for their hard work on their projects and to Rod Jones of the Oklahoma City University Communications and Marketing Department, for inviting the reporter to cover the poster session. Thanks also to Traci Floreani and Joe Meinhart for their work on the original “21st Century Problems” course.

About the Author

Stephen Prilliman, Ph.D., is an associate professor and department chairperson of Chemistry at Oklahoma City University. For the past ten years Stephen has taught both high school and college courses using the POGIL (Process-Oriented Guided Inquiry Learning) method of teaching and is an active participant in the POGIL Project. His research is focused on the development and assessment of inquiry-based activities and labs that address persistent misconceptions.


Barringer, F. 2004. “Despite Cleanup at Mine, Dust and Fear Linger.” (accessed December 20, 2016).

Chemical Safety Board. 2015. “West Fertilizer Explosion and Fire.” (accessed December 20, 2016).

Environmental Protection Agency. 2015. “Emergency Response to August 2015 Release from Gold King Mine.” (accessed December 20, 2016).

Estes, L. 2016. “Oklahoma City University Students Research Facets of Water Crisis.” Oklahoma Gazette, May 5, 2016, 4−5.

Flint Water Advisory Task Force. 2016. “Final Report.” (accessed December 20, 2016).

Flint Water Study. 2016. “Updates.” (accessed December 20, 2016).

Kennedy, M. 2016. “Lead-Laced Water In Flint: A Step-By-Step Look At The Makings Of A Crisis.” (accessed December 20, 2016).

Raker, J.R., B.A. Reisner, S.R. Smith, J.L. Stewart, J.L. Crane,  L.Pesterfield, and S.G. Sobel. 2015. “Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty.” Journal of Chemical Education 92: 973–979.

Torrice, M. 2016. “How Lead Ended Up in Flint’s Tap Water.” Chemical and Engineering News 94 (7): 26–29.

Wisely, J., and R. Erb. 2015. “Chemical Testing Could Have Predicted Flint’s Water Crisis.” Detroit Free Press, October 11, 2015. (accessed December 20, 2016).

Download (PDF, 580KB)

Interdisciplinary Course Collaborations in Community-Based Learning

Gregory Galford, Chatham University
Nancy Trun, Duquesne University
L. Jay Deiner, NYC College of Technology


Teaching undergraduate science courses through the lens of local community issues has the potential to help students connect more strongly to the sciences and to the communities near the university. In considering the construction of such courses, it is clear that even community issues that have strong science cores—water quality, viral and bacterial disease vectors—are inherently multidisciplinary, with scientific and technological considerations in balance with the economic and social factors that inform public policy. The fundamental challenge is, then, to develop ways to teach complex and multidisciplinary community issues within the context of science courses. Here, we report on a pilot study of a course structure designed to address this challenge.  Cohorts of students from different disciplines were paired, and a strategy was developed that required the students to work together to teach one another about a community issue from their discipline’s perspective. This model was applied to cohorts of chemistry and interior architecture students studying local brownfield redevelopment efforts.


Context of the Project

Application-based service learning (ABSL, is a recently developed pedagogy that infuses laboratory science courses with five of the high-impact educational strategies endorsed by the Association of American Colleges and Universities: learning communities, writing intensive courses, collaborative assignments and projects, undergraduate research, and service-learning (Kuh 2008). A unique aspect of ABSL is that the undergraduate research and service-learning activities are both linked to a shared local community issue (Wei and Woodin 2011). Thus, a strength of this teaching method is that it shows students the application of science to community problems.  As a result, it provides the opportunity to teach community awareness and engagement in the science disciplines, where such perspectives are not traditionally emphasized (Dostilio et al. 2013).  The National Science Foundation (NSF) funded initial development of ABSL (CCLI Grant #0717685) and subsequent expansion and refinement of the pedagogy (TUES Phase II Grant #1226175).  As part of the effort to expand ABSL, a team consisting of a chemistry professor at the NYC College of Technology of the City University of New York (City Tech, CUNY) and an interior architecture professor at Chatham University (Pittsburgh, PA) began creation of ABSL versions of chemistry laboratory courses and partnered interior architecture courses, both focused on the issue of brownfield redevelopment.

A brownfield is “a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant” (United States Environmental Protection Agency 2015). As brownfield redevelopment is at the nexus of environmental chemistry, architecture, economics, politics, and social justice, development of an ABSL chemistry course focused on brownfield redevelopment should include perspectives from non-science disciplines.  This made the choice of partnering with the Green and Sustainable Design course from the Interior Architecture program at Chatham a logical one.  On the other hand, the Chatham Interior Architecture program’s interest in teaching students about brownfields derives from its long-standing focus on sustainability. This program has won awards from the American Society of Interior Designers for its work in sustainability education, and Chatham has made sustainability a university-wide educational focus.

While the utility of interdisciplinary collaboration in ABSL course development is clear, a critical question must be answered: What strategies can be used to foster meaningful interdisciplinary collaborations when science and non-science courses partner to study a community issue?

Results and Discussion

Interdisciplinary Collaborations Through a Shared Slide Presentation Project

At the beginning of the spring 2015 semester, a General Chemistry II laboratory course and a Green and Sustainable Design course were chosen as paired cohorts to develop and enact strategies for interdisciplinary collaboration in community-based teaching.  Wherever possible, the core concepts of both courses would be taught through the lens of understanding a shared brownfield redevelopment site, the Gowanus neighborhood in Brooklyn.  Chemistry students would perform in-class water quality laboratory experiments and out-of-class community service relating to the canal.  Design students would use the canal as a case study.  For the chemistry students, an in-class lecture and discussion about brownfields would provide an initial introduction to the issue.  Then the class would take a walking tour of the canal, seeing brownfield development in action as sites previously occupied by chemical processing and heavy industry are transformed into residential neighborhoods and retail spaces.  For the architecture students, brownfield issues would be introduced through an overview of environmentalism, then through specific investigations into environmental history.  Students would also study seminal texts related to sustainability and building, tour local “green” buildings, and view presentations on green building certification programs.

To provide a chemistry perspective to the design students, and a design perspective to the chemistry students, the paired cohorts would co-produce a narrated slide presentation about sustainable development in the Gowanus neighborhood. For the chemistry students, this co-produced slide presentation relates to the learning outcome that students be able to communicate about science in written, oral, and visual forms to a range of different audiences.  For the interior architecture students, the slide presentation connects to the learning outcome that students demonstrate an understanding of the concepts, principles, and theories of sustainability as they pertain to the built environment and its inhabitants. The presentation gives students an opportunity to construct a product that illustrates this gained knowledge.

Because the cohorts were located in different cities, met at different times, and followed semester schedules that included only seven overlapping weeks, the students’ co-production was structured so that it could be achieved through virtual interactions. Figure 1 shows how the Spring 2015 cycle of slide presentation production, feedback, and response formed the basis of a second round of slide presentation production, feedback, and response to be performed by the next semester’s cohorts of General Chemistry II and Green and Sustainable Design (Fall 2015).

Thus, through time, paired cohorts of different disciplines worked together to create increasingly refined versions of the slide presentation. Even though this model of presentation production, peer response, and feedback was developed for courses running in the same semester, the cyclical nature of the interactions means that even cohorts operating during different semesters could engage in such a collaboration model. The current presentation draft is uploaded to the ABSL website (Trun 2015).

We note that the structure of using feedback from one cohort’s presentation to inform the next cohort’s work was critical to pairing courses at Chatham and NYC College of Technology because the universities have such different semester schedules.  Chatham begins the spring semester in early January and ends by the third week in April while NYC College of Technology begins the spring semester at the end of January, recesses for two weeks in April, and then ends the spring semester in late May. However, for universities with more compatible schedules, it would be useful to test a different interaction model, one that would ensure that students receive and act upon feedback from their partner discipline before the end of the course.

Structuring the First Round of Student Slide Presentation Production

For the first round of presentation production in Spring 2015, the instructor of Green and Sustainable Design introduced students to the issue of the Gowanus neighborhood redevelopment and discussed the nature of the peer-to-peer collaboration with the chemistry students. The instructor used principles of problem-based learning (PBL) to facilitate the design students’ structuring of their first presentation draft (Duch et al. 2001). In accord with PBL, the instructor stated the problem (creating an informational slide presentation), provided access to relevant information, and acted as a facilitator for the student-driven conversations. Using categories of goals, ideas, information, and learning needs, students identified the content and organized the structure of the presentation. Using the structure they devised, students determined their own learning outcomes, established individual and team responsibilities, and defined areas where they needed to expand their knowledge. The students spent a total of two weeks planning and creating the presentation and providing feedback to one another. For the design students, this strategy mimics the project management skills they will use in their professional careers.

Details of Student Interactions to Refine Presentation

The Spring 2015 design students produced the first draft of the slide presentation approximately one week before the chemistry students were to begin water sample collection for their in-class research. The chemistry students watched the slide presentation at home, prior to the sample collection field trip. As an ungraded assignment, the chemistry students provided written feedback about the slide presentation to the design students. In the feedback, chemistry students answered the following prompts:

Describe three things you learned from this video.

  • What subject(s) presented in the video was (were) most interesting to you?
  • If you were making a video about Gowanus Canal development, what aspect(s) do you think needs (need) additional investigation?
  • Do you have any additional comments for the student videographers at Chatham University?

The chemistry students were surprisingly engaged in this feedback exercise. Despite that fact that watching the presentation and providing feedback were ungraded activities, eighteen out of twenty-one students provided feedback. All students who provided feedback gave detailed responses, most in the range of 120 to 205 words.

In their feedback, many of the chemistry students reported learning about or becoming interested in the land use concept of zoning, the design concepts of reverse engineering, and Leadership in Energy and Environmental Design (LEED) building practices. Students further reported learning about and becoming interested in specific buildings that are part of the Gowanus neighborhood redevelopment. Finally, students reported becoming particularly interested in the technologies of remediation and sustainable engineering such as combined heat and power systems. While all of the above-described concepts, from brownfields to zoning to environmental remediation, would require entire courses to cover in detail, the slide presentation provided an initial exposure for the chemistry students.

In addition to reporting that they had gained exposure to ideas of neighborhood development and sustainable design, the chemistry students commented on aspects of development that they had not previously understood. For example, students commented that they had learned about the level of detail that goes into planning a building. Another student commented that while he or she was familiar with the concept of reverse engineering in the field of computer science, it was a surprise to find that the same concept could be applicable to environmental issues.

After the chemistry students completed their feedback forms, names were redacted, and the forms were sent to the design students. By the time chemistry students had completed the feedback forms, the design students’ semester had ended, so the design students received the feedback forms via email. In the email, the design students were asked to review the forms and provide written responses in consideration of the chemistry students’ feedback and in consideration of the experience of making a slide presentation for a partner class. The design students were asked to respond to six prompts, including

  • What responses were most similar to what you anticipated?
  • What responses did you find most unexpected?

Despite receiving the chemistry students’ feedback after the completion of the course, six out of the nine design students provided written feedback. Responses to the above prompts provided insight into the way design students view the learning style and knowledge background of science students. For example, some of the Green and Sustainable Design students said they expected that the science students would report being interested in the factual aspects of design (LEED, brownfields, and sustainable design technologies), but were surprised that chemistry students requested more information about the types and origins of pollution in the Gowanus neighborhood. In essence, the design students had expected that chemistry students would already have a full chemical understanding of the canal, even though such an understanding would require quite extensive and advanced laboratory work. In addition, the design students expressed surprise that the chemistry students commented on the design aspects of the presentation in particular, suggesting more visuals and less text in future versions of the presentation. Providing design students with insights into scientists’ knowledge and communication styles was an unexpected outcome of the peer-to-peer collaboration activity, and it may be helpful as designers and environmental scientists frequently work together during a building project.

Conclusions and Path Forward

Incorporation of peer-to-peer interdisciplinary activities into an ABSL course provided a means to expose students to a complex community issue from a different perspective. A serial collaboration between separate cohorts of chemistry and design students was developed, but other disciplinary pairings are also possible, as are other work structures like simultaneous virtual or in-person collaboration or mixed discipline teams. Students’ level of engagement in the peer-to-peer activities, as evidenced by their willingness to participate in ungraded exercises, was high.  It is hypothesized that two factors contribute to the observed student engagement: the increased ownership students feel when participating in projects they have structured through problem-based learning; and the greater authenticity of generating work to be used by peers as opposed to work that is simply viewed by an instructor. These hypotheses will be investigated through continued use of interdisciplinary peer-to-peer learning projects in future ABSL courses.


The authors gratefully acknowledge support of this work by the National Science Foundation (TUES Phase II Grant #1226175).  L.J.D. thanks the NYC College of Technology for additional support of the chemistry course through the CHLCARE initiative.

About the Authors

Gregory Galford is an assistant professor of interior architecture at Chatham University in Pittsburgh, PA.  He is currently a doctoral student at the University of Missouri.  His master’s degree is from the Architectural Association in London.  His research focuses on alternative forms of housing.

Nancy Trun is an associate professor of biology at Duquesne University in Pittsburgh, PA. Nancy earned her Ph.D. in molecular biology from Princeton University. She is currently working on the microbiology of passive bioremediation systems for abandoned coal mine drainage using the application-based service learning pedagogy.

L. Jay Deiner is an associate professor of chemistry at the NYC College of Technology of the City University of New York.  Jay earned his Ph.D. in chemistry from Harvard University.  His research focuses on electrocatalytic materials and on chemistry laboratory pedagogy.


Dostilio, L.D., N. Conti, R. Kronk, Y.L. Weideman, S.K. Woodley, and N. Trun. 2013. “Civic Learning through Public Scholarship: Coherence among Diverse Disciplines.” Journal of Public Scholarship in Higher Education 3: 43–65.

Duch, B.J., S.E. Groh, and D.E. Allen, eds. 2001. The Power of Problem-Based Learning. Sterling, VA: Stylus Publishing.

Kuh, G.D. 2008. High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. Washington, D.C.: Association of American Colleges and Universities.

Trun, N. 2015. ABSL Cross-Discipline Collaboration: Architecture & Chemistry. (accessed November 24, 2016).

United States Environmental Protection Agency. 2015. Brownfield Overview and Definition. (accessed November 24, 2016).

Wei, C.A., and T. Woodin. 2011. “Undergraduate Research Experiences in Biology: Alternatives to the Apprenticeship Model.” CBE-Life Sciences Education 10: 123–131.

Download (PDF, 731KB)

Incorporating Photo-Book of Concepts in Physics and Environmental Chemistry Courses

Nasrin Mirsaleh-Kohan,
Texas Woman’s University
Cynthia Maguire,
Texas Woman’s University


Much has been written about the importance of helping students gain critical thinking and analytical reasoning skills that are transferable beyond classroom situations (Association of American Colleges and Universities 2007; Kuh 2008). Student engagement correlates positively to these skills as well (Carini et al. 2006). To this end, the photo-book activity was designed to allow students opportunities to connect real-world applications with course concepts. By analyzing the relationship of the subject matter to the real world, students reinforce their understanding and application of ideas learned in class. In the photo-book project, students were asked to capture class concepts in pictures. This assignment encouraged students to be more observant and to search for examples in their world and further allowed them to freely express their interpretation of the subject and reflect on their learning. This project was embedded in various classes (as recommended by Pithers and Soden 2000) such as physics, environmental chemistry, and climate change, and also in community projects such as Earth Week. In this paper we discuss the details of the photo-book concept, offer examples of students’ comments, and finally, present an overview of this learning model.


Critical thinking and analytical reasoning, problem-solving skills, and the ability to understand varying perspectives on issues are among the traits valued by employers in evaluating job applicants. As knowledge is expanding so quickly, students cannot possibly master content knowledge; the key is to learn habits of mind that will enable them to continue learning beyond their formal academic training. Experiential learning activities can help students integrate and apply skills and knowledge in real-world settings and situations, and thus accelerate their success (Association of American Colleges and Universities 2007; Kuh 2008; Texas Woman’s University 2013). Furthermore, student engagement is positively linked to learning outcomes such as critical thinking and grades (Carini et al. 2006). Extensive research also suggests that students need to“think well,” and activities should be embedded in courses to encourage critical thinking (Pithers and Soden 2000 and references therein).

Texas Woman’s University (TWU) founders recognized the importance of this and adopted the University motto, “We learn to do by doing.” Stemming from a quote by Comenius (considered the father of modern education) and recommended by Helen Stoddard, one of TWU’s first Regents, the motto captures the unique focus of a TWU education so well that it was engraved on the University’s first building (Bridges 2001, 7).

At TWU, experiential learning may include internships, service learning projects, civic engagement, scholarship, or creative activities. Creative activities include projects that provide students with real-life, hands-on experiences. Engaging students in creative activity reinforces academic knowledge and establishes a foundation for academic growth. Student experiences may extend beyond the classroom. The photo-book project described in this paper is one such creative activity. Universities are increasingly incorporating such opportunities into the curriculum and institutional offerings (Karukstis 2010; Lopatto 2010; Malachowski and Dwyer 2011; Sheardy 2010; Sloane 2010). Thiry et al. (2011) note, “Undergraduate science education should be augmented by student engagement in high quality,‘real world’ experiences that meet students’ broad range of interests, talents, and career goals. Well-designed experiences supplement classroom learn- ing in many ways…” (384). Asking students to contextualize what they are learning in class should be expected to inspire motivation (Fisher 2016). Understanding how our students are motivated and finding practical strategies can improve the quality of learning in our courses (Ambrose et al. 2010). Eyler (2009) suggests the benefits include“a deeper understanding of subject matter than is possible through classroom study alone; the capacity for critical thinking and application of knowledge in complex or ambiguous situations” (26). Such activities provide a means to both enhance student engagement and to better prepare students for success after graduation.

TWU’s Quality Enhancement Plan (QEP), Pioneering Pathways: Learn by Doing, is a five-year plan mandated by our accrediting agency. It is designed to enhance student learning through student engagement in experiential learning.

The intention of this project is expressed in the words of Benjamin Franklin, “Tell me and I forget, Teach me and I remember, Involve me and I will learn.” Learning by doing and applying theory to practice is considered crucial for student success in an ever-changing, increasingly connected, and global world. The related QEP Student Learning Outcome (SLO) for our photo-book activity is for students to effectively connect classroom theories to real-world experiences through practical application of knowledge. In this paper we discuss three QEP-designated courses and how this SLO was addressed using the photo-book of concepts in each course.

Beginning in the summer of 2007, faculty at TWU engaged with the SENCER community of practitioners to improve science education. SENCER focuses on real-world problems and, by so doing, extends the impact of this learning across the curriculum to the broader community and society. Faculty develop expertise in teaching “to” basic, canonical science and mathematics “through” complex, capacious, often unsolved problems of civic consequence. Using materials, assessment instruments, and research developed through SENCER, faculty members design curricular projects that connect science learning to real-world challenges (Middlecamp 2011; Sheardy 2010; Sheardy and Burns 2012). The SENCER understanding of learning acknowledges a debt to the philosopher William James, who wrote in his Talks to Teachers (1899):

Any object not interesting in itself may become interesting through becoming associated with an object in which an interest already exists. The two associated objects grow, as it were, together: the interesting portion sheds its quality over the whole; and thus things not interesting in their own right borrow an interest which becomes as real and as strong as that of any natively interesting thing. The odd circumstance is that the borrowing does not impoverish the source, the objects taken together being more interesting, perhaps, than the originally interesting portion was by itself.

More contemporaneously, SENCER’s work is informed by the National Academies’ commissioned reports on learning, notably How People Learn and Knowing What Students Know: The Science and Design of Educational Assessment (Bransford et al. 2000; Pellegrino et al. 2001). SENCER Ideals have been applied to develop field-tested courses for many disciplines on a broad range of topics. Among those ideals, “SENCER conceives the intellectual project as practical and engaged from the start, as opposed to science education models that view the mind as a kind of storage shed where abstract knowledge may be secreted for vague potential uses.” Students and faculty report that the SENCER approach makes science more real, accessible, useful, and civically important (Carroll 2012).

We are introducing a creative activity we call photo-book of concepts included in three courses (physics, environmental chemistry, and climate change) at TWU. Each is a QEP-designated course at TWU; each is also a SENCER course. Maguire’s environmental chemistry course was, in fact, our first SENCERized course.

Photo-Book of Concepts

The photo-book project described here is an example of a learning activity which also includes the guided reflection concept. We teach students the laws and concepts of the subject matter in the classroom. Then students have a chance to independently think about what they have learned in the class and look around for illustrations of the concepts in their everyday lives. This activity encourages students to be more observant and search for examples in their world. This assignment allows them to freely express their interpretation of the subject and reflect on their learning. In this project students are required to take a few photographs (four to six) that represent the ideas in the subject matter. Students need to email two of their pictures to the instructor, each on a single slide in a presentation file format, along with a title and a description of what concept each picture represents. (See Figures 2, 5 and 6 for examples.) The instructor gives feedback to help students focus on successful ways of thinking about the assignment. After receiving the comments back from the instructor, final pictures in the same format are sent to the instructor along with their titles and descriptions. The instructor then chooses one picture from each student to exhibit on the wall of the classroom. At the exhibition, each student selects one picture (not their own) they find interesting and writes a reflective paragraph on why the photo grabbed their attention and how it relates to the subject matter. Finally, for a larger class the instructor chooses 15-20 representative pictures (the number is up to the instructor) that show different concepts in the course for printing on a poster. This poster could be displayed in the department and might even be presented in a larger scale on the campus or at conferences. For a smaller class, the instructor could divide students into groups and ask each group to make a poster presentation. More detailed instructions, examples of timelines, and detailed rubrics are included as an appendix to this article.


Physics appears to be an abstract and difficult subject to most students, especially if their major is not physics. Most students do not appreciate how important physics is and how relevant it is in their daily lives. The photo- book activity is a unique bridge between explaining physics concepts in a classroom and observing them in the real world. This activity was included for the first time in the algebra-based physics course in fall 2014, addressing one of the course SLOs, analyzing the relation of physics to the world around them. This activity was also aligned with the QEP SLO, effectively connecting classroom theories to real-world experiences through practical application of knowledge. There were seventy-five students enrolled in this class. As part of the class, students were assigned to start looking more carefully around them in search of physics and to capture physics principles in pictures or photographs. The idea behind this project was to change students’ perspectives about physics. This activity required students to take four photographs ( just to have a manageable number of pictures due to the large number of students) that represented physics principles. Pictures had to be photographs students captured personally (pictures taken online or from other sources were NOT accepted). For instance, they could take a picture of ice on a plant’s leaves. This picture can represent the heat concept in physics and how water needs to be 0° Celsius to become ice. This assignment made them look at their world carefully, reflect on what they learned in the class and find physics. As they started to develop an awareness of physics more and more, the instructor hoped they would want to learn more. Students had to email two of their pictures in a presentation file to the instructor to receive preliminary feedback on their pictures. A few weeks later, they submitted all four pictures. The instructor chose one picture of the four from each student to exhibit on the wall of the physics laboratory so that all the students could see their classmates’ work. At the exhibition, each student selected a photo that she thought perfectly showed physics and wrote a reflective paragraph about it. Since the students were asked to focus on just one picture, they were able to think about one physics concept more deeply and reflect their understanding in a written format. It was very interesting to read different students’ reflections about the same picture, and see how each student emphasized something completely different. For example, when we see a picture of an ice skater, we might see the concept of motion and Newton’s second law in the picture. However, there is also conservation of angular momentum in the motion of an ice skater. When ice skaters close their arms, they will spin faster. Furthermore, reflective writings also revealed students’ misunderstanding about a concept. Overall, displaying the pictures on the wall gave students an opportunity to share their experiences. Finally, we chose about forty-five most representative pictures showing different areas such as nature, chemistry, biology, and music and made a poster. This poster (shown in Figure 1) is displayed on the wall outside of the physics lab and was also presented at several university events (e.g. in the experiential learning showcase and at the Celebration of Science symposium at TWU). This poster was also presented at the 2015 SENCER Summer Institute in Worcester, MA. Moreover, presenting this poster to other students who were not taking physics sparked an interest in them and showed them physics in new places. This activity was also incorporated in the algebra-based physics course for fall 2015 and we will continue to include this project annually in physics classes.

Figure 1. An example of one of the posters made in the physics course.

Environmental Chemistry

TWU students enrolled in environmental chemistry during the spring 2014 semester were assigned to collect a series of eight photographs related to water issues, and the class will select the best for inclusion in posters to be displayed during Earth Week (April 21–25). Figure 2 shows an example slide illustrating the assignment, which was submitted as a presentation file with one photo per slide. Students were encouraged to take their own photos, but were also allowed to use photos found online in cases where they needed material that is not available locally in north Texas (e.g. ocean garbage patch, etc.). Several opportunities for photography were offered during field trips to various places in and around our community. After all the photos were collected, they were printed on copy paper and displayed on a large wall during one class period. Students then worked in small groups of two or three to collect the best examples related to their particular water issue.

Figure 2. An example slide illustrating the assignment, which was submitted as a PowerPoint file with one photo per slide.
Earth Week Poster Show

Once each group had selected appropriate photos, environmental chemistry students were instructed to tell their water photo story in pictures with minimal words as captions for the photos. Their assignment included making the information understandable for elementary school children who would be attending the reception held during the Earth Week exhibition. A grading rubric (see appendix) was devised for this assignment prioritizing content, organization, and grammar. Selected water photo posters are shown in Figure 3.

Figure 3. Selected water photo posters exhibited during the Earth Week poster show.

Children in some area elementary schools were also invited to create posters and the best were chosen by a group of their faculty to be included in the TWU Earth Week exhibition. One of the instructor’s goals in organizing this QEP- and SENCER-sponsored event was to increase the desire to attend college among school children participating, and to enhance their perception of TWU as a prospective institution to attend. The students and their families and teachers were all invited to the reception held on campus during the exhibition. The reception provided a time to share between the younger students and TWU environmental chemistry students. Selected children’s posters are shown in Figure 4. In addition, organizing the exhibition provided an experiential learning opportunity for two elementary education majors taking the environmental chemistry course.

Figure 4. Selected children’s posters created by children in area elementary schools and exhibited at TWU’s Earth Week poster show.
Climate Change

The Climate Change class in spring 2016 was assigned to take their own photos of climate change in the world around them. Their instructions were,“Photographs must be your own original work. They cannot show people’s faces and cannot include children. Each photograph must be in a common image format such as JPG or TIFF, and at least 1.0 MB file size in order to have adequate resolution if printed.” Images were uploaded into the course Blackboard along with a descriptive paragraph to explain the image connection to climate change, as a portion of the credit for the midterm exams. The instructor (Maguire) failed to require use of a presentation file format for submissions, which led to increased difficulty correlating descriptions with photos.

Consistent with the creativity shown in the physics and environmental chemistry courses, students in Climate Change were able to see impacts of changing climatic conditions in ordinary things around them. Photos included large hailstones from an unexpected and dramatic hail event in Fort Worth, a tree entangled in power lines, and an adult butterfly photographed in early January—unusual even for north Texas. A selection of photos and reflective writing descriptions are shown in Figure 5. Students were able to articulate that excessive precipitation, hailstorms, drought, technology impacts, and biological cycles outside of their usual timing were all perceivable manifestations of climate change. Maguire plans to create a climate change photo poster to promote the course on campus and to use when presenting the photo-book idea.

Figure 5A. A selection of photos and reflective writing descriptions submitted by students in the climate change course (A-C).
Figure 5B
Figure 5C


We have employed direct and indirect assessments to measure students’ learning in this project. In the direct assessment, we used students’ photos to evaluate their understanding of the concepts presented in the pictures. The student learning objective for our QEP-designated courses was to effectively connect classroom theories to real-world experiences through practical application of knowledge. The photo-book assignment was used to measure this objective in all courses mentioned in this article. Grades on the photo-book of concepts tend to be higher than other coursework, indicating that students are able to connect classroom theories to real-world experiences, and that this activity was an effective tool in helping students achieve that connection. We have attempted to compare overall course averages using this assignment with classes that did not utilize the photo-book. Unfortunately, it is not possible to make a direct comparison because one of us was not teaching at TWU prior to using this assignment and the other made more than one change in her course design. No assessment data are available for the climate change course as it was still in progress when this article was written.

Figure 6. An example of a reflective writing piece; one student wrote this paragraph about another student’s photo. The student who took the photo saw equilibrium. This student saw potential energy in this picture. Both concepts apply to this scene.

Indirect assessment of students’ learning took place during the in-class picture exposition while students were sharing their ideas about other students’ photos and also in a reflective writing piece that they submitted later. (See an example in Figure 6.) Moreover, students’ comments in the course evaluations have demonstrated that this is an engaging activity for the students and further expands their understanding and appreciation of the subject matter. Unexpectedly, this project also leads students to learn more about their peers outside of class. Some students are passionate about rodeos, have traveled to exotic places, or have unique hobbies. In this experiential learning activity, students were more observant and searched for examples of the subject matter in their world. This assignment also allowed them to freely express their interpretation of the subject and reflect on their learning.

From course evaluation comments it is clear this activity was one of the students’ favorites. They were also surprised how much they had “learned by doing.” Here are a few of our students’ comments as written in the physics class evaluation forms:

  • The photo-book project, it was actually pretty interesting paying attention to a world filled with physics”
  • “This course forces you to apply the concepts that you learn to things in your everyday life”
  • “The teacher really shows that she cares and wants to work with I am very glad the homework allows multiple attempts because it helps me get through the thinking [process] no matter how long it takes. I enjoyed the Photo Book project.”
  • “The photo-book project was exciting and a fun way to learn the practical application of physics”
  • “Being shown how we could really apply what was be- ing taught in real life situations”
  • From their comments, it is clear that the photo-book assignment led students to “think well” and critically, as Pithers and Soden (2000)

One of the authors (Maguire) noticed when she included this project for Earth Week in her class she received one of the highest-ever course evaluation ratings from the students in that class; she has taught the course every semester since fall 2007. This higher rating might possibly be attributed to student motivation being higher since this project was a practical strategy to connect class concepts to students’ interests (Ambrose et al. 2010); also, the students discovered how relevant these ideas are to the world around them, a key part of learning to analyze and innovate ideas (Association of American Colleges and Universities 2007).

Interestingly, a student’s submitted photo can also give valuable insights into their understanding or misunderstanding of the concept they are trying to portray. One such example (Figure 5c) was a tree trunk with a large limb sawed off. The student stated that the image “signifies climate change because of the different ridges in the bark.” This provided an unexpected opportunity for faculty to clear up a misunderstanding.

The SENCER Student Assessment of Learning Gains (SALG, allows students to rate how well specific activities help their learning. SALG data from five years (2007 to 2011) and more than 1300 instruments evaluating SENCER courses have indicated that this type of pedagogical approach enhances durable learning and a deeper understanding. Carroll (2012) reported that SENCER faculty are making more progress toward the main categories of pedagogical goals—those related to (a) understanding course content, (b) skill-building, (c) changing attitudes toward science, and (d) building habits of mind and behavior—than their non-SENCER colleagues. These surveys constitute about twenty-seven percent of the total SALG course evaluations in that period of time. Although we have not used SALG to evaluate the photo-book assignment, based on the reflective writing our students have done we expect that our students have acquired a deeper understanding and durable learning from this activity.


We developed the photo-book project as a creative learning activity in our courses to provide an opportunity for our students to develop a deeper understanding of the subject matter in our courses. We also wanted students to learn how relevant science subjects are to their everyday lives. After incorporating this project in various sections of three courses and one community outreach event, we believe the photo-book of concepts idea is a valuable tool for students and instructors alike. Our future plans include the use of the the photo-book assignment in courses we teach regularly and additional assessment through both our QEP program and the online SALG. Photo-books have great potential in terms of students’ developing enduring learning, but they are also a manageable workload for faculty. The project has been successfully completed twice in physics classes, and once each in environmental chemistry and climate change. After additional experience, we may choose to make the photo-book assignment an embedded assessment tool.

This project can be employed in larger or small classes. The physics class had seventy-five students, while environmental chemistry had twenty-two and climate change had only ten. Varying the number of photos submitted (four in physics versus eight in environmental chemistry) made it easy to adjust the workload. The project does not require any specific device or equipment; students only need a camera, and most of our students have been using their cell phones. It is essential to have a practical way of dealing with large file sizes. We have accomplished this using submission via email to a special email account (e.g., or uploading into Blackboard, either into a Discussion Board (visible to all students) or as a graded assignment link that was not shared with other students. All processes worked well provided students were required to place each photo and the accompanying text on a presentation slide for submission. This is necessary in order to keep it practicable. Other tools such as cloud sharing of files are available as well. In any case, faculty need to be sure that their selection fits the technology limitations of their situation.

In this assignment we seek to help students understand the subject through connecting it to interests already in their daily life. For example, a student who attends a rodeo to watch a family member compete takes pictures of a rodeo event and connects the rodeo to physics. Such a student could be more interested in physics in the way William James (1899) stated, “Any object not interesting in itself may become interesting through becoming associated with an object in which an interest already exists.”

Posters and oral presentations resulting from the photo-book activity have been shared during various meetings and symposia, both on and outside our campus. Faculty members in a wide variety of disciplines have shown an interest in this idea and have asked for our instructions, leading us to write this article in order to share our experiential model with a wider group of educators. We believe the photo-book of concepts will be a positive experience in whatever disciplines it may be applied.


The authors would like to thank the Robert H. Welch Foundation, Texas Woman’s University, the Department of Chemistry and Biochemistry, and the Quality Enhancement Plan (QEP) at TWU for their support. We also greatly appreciate mentoring provided by Dr. Richard D. Sheardy and Dr. Matthew Fisher. One of the authors (NMK) also would like to thank Sidrah Khan, physics teaching assistant, for her aid with the photo- book project, especially preparing the posters.

About the Authors

Nasrin Mirsaleh-Kohan received her Bachelor of Science degree in Physics at the University of Tehran. She came to the U.S. as a graduate student and earned her Master’s degree in computational Physics at the Bowling Green State University. In 2008, she finished her Ph.D. in Physics from the University of Tennessee (UT), followed by a postdoctoral fellowship at the University of Sherbrooke in Canada. Then she returned to Tennessee and was a postdoctoral research associate at UT. Kohan accepted her first tenure-track faculty position at Texas Woman’s University (TWU), Department of Chemistry and Biochemistry in May of 2013. She teaches algebra-based physics and calculus- based physics. Her research interests include surface-enhanced Raman scattering, interaction of anticancer drugs with DNA, negative ions, and radiation damage to DNA.

Nasrin is already a strong believer in using hands-on experiences to educate students. She is excited to have found a place that values her creative approach to teaching physics, as evidenced by her selection as a TWU Experiential Learning Fellow.

Kohan is co-advisor for the KEM Club (Kappa Epsilon Mu), TWU’s student chapter of the American Chemical Society. She has incorporated various civic engagement activities in KEM club such as the Thanksgiving food drive and Calculate it Forward. Nasrin is also part of the SCI-Southwest team at TWU and helps to convey the mission of SENCER in the Southwest region.

Cynthia Maguire earned her B.S. from Central State University in Oklahoma and two M.S. degrees-biology teaching and chemistry teaching, both from Texas Woman’s University. She remained at TWU and is now a Senior Lecturer in the Chemistry and Biochemistry department.

Ms. Maguire created the first SENCER course at TWU, Introduction to Environmental Chemistry: Global Perspectives, in the fall of 2007. She teaches primarily sustainability-related courses which form the core of an upper-division certificate program, Science Society and Sustainability. Cynthia is faculty advisor for Roots, a student sustainability organization at TWU; and she models civic engagement for her students through her leadership in the Native Plant Society of Texas, helping students be aware of sustainable, water- and habitat- conserving landscaping on their property and in their communities.

Maguire is also working on the SENCER dual poster project, researching how students learn to communicate disciplinary knowledge to others outside their specialty. Ms. Maguire is co-director of SCI-Southwest and is a SENCER Leadership Fellow. She was recently named a TWU Senior Experiential Learning Fellow. Her work has been published as a chapter in two ACS Symposium books about SENCER, and an article in The International Journal of Sustainability Education.


Ambrose, S.A., M.W. Bridges, M. DiPeitro, M.C. Lovett, and M.K. Norman. 2010. “What Factors Motivate Students to Learn?” In How Learning Works: Seven Research Based Principles for Smart Teaching,” S.A. Ambrose, M.W. Bridges, M. DiPeitro, M.C. Lovett, and M.K. Norman, eds., 66–90. San Francisco, CA: Jossey-Bass.

Association of American Colleges and Universities. 2007. “College Learning for the New Global Century: A Report from the National Leadership Council for Liberal Education and America’s Promise.” Washington, D.C. Available at: http://www. (accessed July 2, 2016).

Bransford, J.D., A.L. Brown, and R.R. Cocking; National Research Council, Committee on Developments in the Science of Learning. 2000. How People Learn: Brain, Mind, Experience and School. Washington, D.C.: National Academy Press.

Bridges, P. 2001. Marking a Trail: The Quest Continues. A Centennial History of Texas Woman’s University. Denton, TX: TWU Press.

Carini, R.M., G.D. Kuh,and S.P. Klein. 2006. “Student Engagement and Student Learning: Testing the Linkages.” Research in Higher Education 47 (1): 1–32.

Carroll, S. 2012. SALG Results Show SENCER Faculty Achieve in Raising Higher-Order Learning Gains. SENCER eNews. (accessed July 2, 2016).

———. 2010. “Engaging Assessment: Using the SENCER-SALG to Improve Teaching and Learning.” In Science Education and Civic Engagement: The SENCER Approach, R.D.Sheardy, ed. ACS Symposium Series, 1037: 149–198.

Eyler, J. 2009. “The Power of Experiential Education.” Liberal Education 95 (4) 24–31.

Fisher, M. Personal electronic communication. April 7, 2016. James, W. 1899. Talks to Teachers. New York: Henry Holt and Co. Karukstis, K. 2010. “A Horizontal Mentoring Initiative for Senior

Women Scientists at Liberal Arts Colleges.” Council on Undergraduate Research Quarterly 31 (2): 33–39.

Kelly, R. 2011. “Implementing High-Impact Learning Practices That Improve Retention.” Recruitment & Retention in Higher Education 25 (12): 6–7.

Kolb, D. 1984. Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs, NJ: Prentice-Hall.

Kuh, G.D. 2008. High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. Washington, D.C.: Association of American Colleges and Universities.

Lee, S. 2007. “Increasing Student Learning: A Comparison of Students’ Perceptions of Learning in the Classroom Environment and Their Industry-Based Experiential Learning Assignments.” Journal of Teaching in Travel & Tourism 7 (4): 37–54.

Lopatto, D. 2010. Science in Solution: The Impact of Undergraduate Research on Student Learning. Washington, D.C.: CUR.

Malachowski, M., and T. Dwyer. 2011. “Requiring Research for All Students in a Major: Opportunities and Challenges.” Council on Undergraduate Research Quarterly 32 (1): 23–28.

McGlynn, A. 2009. “Proven Pathways to Success for Minority Students.” Education Digest 74 (9): 42–45.

Middlecamp, C.C. 2011. “Sustainability! What, How, and Why Now for Our Chemistry Students.” Sustainability Symposium Series 1087.

Middlecamp, C.C. 2007. “Accentuate the Positive; Eliminate the Negative?” J. Chem. Educ. 84: 31.

Middlecamp, C.C., and A.D. Jorgensen, eds. 2009. Sustainability in the Chemistry Curriculum. ACS Symposium Series 1087.

Mirrer, K. 2010. “Designing New Technologies to Expand Knowledge and Information Sharing in Internship and Experiential Learning Settings.” International Journal of Technology, Knowl- edge, and Society 6 (4): 121–135.

Moore, D.T. 2010. “Forms and Issues in Experiential Learning.” New Directions for Teaching and Learning 124: 3–13.

Ong, M., C. Wright, L. Espinosa, and G. Orfield. 2011. “Inside the Double Blind: A Synthesis of Empirical Research on Undergraduate and Graduate Women of Color in Science, Technology, Engineering, and Mathematics.” Harvard Educational Review 81 (2): 172–208.

Pelligrino, J., N. Chudowsky, and R. Glaser; National Research Council, Committee on the Foundations of Assessment. 2001. Knowing What Students Know: The Science and Design of Educational Assessment. Washington, D.C.: National Academy Press.

Pithers, R.T., and R. Soden. 2000. “Critical Thinking in Education: A Review.” Educational Research 42 (3): 237–249.

Qualters, D.M. 2010a. “Bringing the Outside In: Assessing Experiential Education.” New Directions for Teaching and Learning 124: 55–62.

———. 2010b. “Making the Most of Learning Outside the Classroom.” New Directions for Teaching and Learning 124: 95–99.

Sheardy, R. 2010. Science Education and Civic Engagement: The SENCER Approach. Washington, D.C.: American Chemical Society.

Sheardy, R., and D. Burns, eds. 2012. Science Education and Civic Engagement: The Next Level. ACS Symposium Series 1121. Washington, D.C.: American Chemical Society.

Sloane, A. 2010. “Peer Teaching and Mentoring: The Case of Undergraduate Research Fellows.” Council on Undergraduate Research Quarterly 31 (2): 11–17.

Suskie, L. 2009. Assessing Student Learning: A Common Sense Guide. 2nd ed. San Francisco: CA: Jossey-Bass.

Texas Woman’s University. 2013. “TWU QEP Report.” http://www. (accessed July 2, 2016).

Thiry, H., S. Laursen, and A. Hunter. 2011. “What Experiences Help Students Become Scientists? A Comparative Study of Research and Other Sources of Personal and Professional Gains for STEM Undergraduates.” Journal of Higher Education 82 (4): 357–388.

Download (PDF, 2.83MB)

Smart Moves: Making Sense of the Math in Environmental Data

Martha Merson,
Selene Gonzalez-Carrillo,
Ethan Contini-Field,
Harvard University
Meredith Small,
Harvard Law School


Environmental organizers and their constituents, local community group members concerned about environmental health, operate in a context with rich and varied opportunities for learning about and applying mathematics to communicating environmental data. Prior to Statistics for Action, project partners—organizers at environmental non-profits—spent little time with group members analyzing data. Organizations did not have a method or protocol for considering the most effective way to frame findings for neighbors and decision makers. During the Statistics for Action Project, STEM educators and environmental organizers collaborated to use the context of environmental organizing as a platform for science and math learning. This article describes Smart Moves and Memorable Messages, two approaches that advanced goals for both math learning and organizing.

Rationale and Significance

Community members who live close to polluting facilities or toxic sites are often among the first to recognize the threats to human health. The historic pattern of placing polluting industries in or near low- income neighborhoods means that residents in these communities carry an unequal burden of negative health effects from environmental contamination (Faber and Krieg 2002). Bolstering the effectiveness of community groups organizing to clean up, curtail, or close down polluting operations has the potential to make a positive difference in human and environmental health. Local community groups that are well organized often prevail, gaining environmental protections and limiting negative health effects (Bullard 1993; Scammell and Howard 2013; see also annual reports for organizations such as Center for Health and Environmental Justice1 and Toxics Action Center2).

The Statistics for Action (SfA) project brought adult educators together with environmental organizers to create and test a set of activities and guides. The goal was to promote math and science learning for community group members involved in environmental campaigns in a way that would strengthen data-driven advocacy efforts. Organizing provokes concern and motivates concerned residents to action. Attention to science and math learning may happen as part of a larger organizing effort. Generally it is a means to an end. In spite of differing priorities, SfA project partners saw potential benefits to promoting math and science learning in the context of community organizing.

After a few false starts, SfA’s team of educators and organizers agreed on messaging with data as an area of focus. Typically when organizers and community members query experts and regulators, they are treated to a fire hose of information. Daunting amounts of data call for strategies for both making sense of data and communicating key points once they are identified. Thus, the project’s educators drafted a set of “Smart Moves” for math learning. Organizers embraced the norms for guiding mathematically rich conversations. The Smart Moves and SfA communication activities described below can be a useful starting point for other projects blending environmental advocacy and education.

Background and Questions

While observing community group meetings, science and math educators found that most groups struggled to make sense of technical documents such as environmental quality reports and standards for contaminants. Among these groups, three strategies for managing environmental data in technical documents were evident:

  • Avoid the data and analysis altogether; focus on other tasks
  • Find an expert to assist
  • Delegate data management to a group member with a science, math, or engineering background.

Given that international assessments paint a dismal picture of U.S. adults’ basic numeracy skills (Goodman et al. 2013), such strategies make sense. By opting out, delegating, or contracting out a careful look at the technical documents, however, groups often lose out on the opportunity for all of their members to use data in creative ways to advance their cause. What if a fourth strategy were viable? The project’s formative research examined to what extent environmental organizers who are trusted by local community group members could be conduits for science and math learning. Project leaders, partners, and evaluators were convinced that if provided with a robust set of resources, organizers could effectively facilitate math learning. Project partners envisioned that with guidance from an organizer, all members of a community group would engage with local environmental test results, and in the process gain increased confidence in communicating the processes and findings to neighbors and decision makers. Educators on the project team also hypothesized that group norms or ground rules would be critical to establishing trust and engagement for doing math in community group settings.

Context and Players

Over 50 organizers used draft versions of SfA’s activities and guides to promote understanding of environmental testing (final versions are available for free at Organizers worked in cities, towns, suburbs, and rural communities in North Carolina, California’s Central Valley, New England states, and Chicago, Illinois. Prior to applying for funding, math educators interviewed staff at nine environmental organizations leading a variety of campaigns seeking improved environmental quality and advocating for human health. Four of the interviewees recognized the potential benefits for increased understanding of environmental data among their staff and community members. The four organizations—Blue Ridge Environmental Defense League, Pesticide Watch Education Fund, Little Village Environmental Justice Organization, and Toxics Action Center—were named in the proposal for funding Statistics for Action and were active partners during the project. These organizational leaders then designated staff to participate in Statistics for Action professional development. Campaign issues ranged from methyl iodide use in California’s strawberry fields to containing the operations of a junkyard in Vermont. A number of issues were on residents’ minds: fumes from an asphalt plant, toxins from a medical waste incinerator and a galvanizing plant, water contamination from a recently closed textile or pesticide manufacturer. Interested readers can find stories and accompanying educational materials in the Change Agent issue on Staying Safe in a Toxic World ( Toxics Action Center played a key role early in the project, giving feedback on draft versions of materials. It hired staff with experience in grassroots organizing, but initially just one had a degree in environmental science. Over time more organizers and organizations were recruited to use SfA materials through project advisors’ networks and conferences. The majority were college-educated young women, though organizers ranged in age from 23-60+. They played diverse roles on the project, recruiting community groups for pilot testing, supplying data sets, fleshing out stories, and reviewing materials. They offered feedback after using activities and participated in quarterly conference calls to share best practices. A core group of eleven participated in evaluation activities including surveys before and after being introduced to SfA and annual interviews.

Conditions under which organizers work are challenging. Unlike settings such as museums and nature centers which offer recreation, family-friendly learning opportunities, or entertainment, an environmental campaign asks adults to attend lengthy meetings and to volunteer for unpaid work. Meetings about environmental campaigns can be emotional. Residents are often angry about past wrongs and stressed about future outcomes and current impacts on their health. Meeting agendas may shift at the last minute due to newly released data or a change in hearing dates. Key group members may become ill or move away. In keeping with the characteristics of science and math learning in informal venues, challenges and opportunities arise from the compelling, learner-driven but unpredictable nature of learning opportunities in environmental organizing (Allen and Gutwill 2011).

New Practices for Facilitating STEM Learning: Smart Moves and Memorable Messages

Using the Smart Moves

SfA educators introduced a list of Smart Moves that set group norms when math-reticent or math-phobic participants would be asked to do math during a group meeting that could include mathematically confident peers. An educator with many years of experience drafted the first set of Smart Moves in the project’s first year. The Smart Moves were printed on 11”x17” paper and presented as a poster that could hang during a community meeting or workshop. At professional development sessions for environmental organizers in the first two years of the four- year project, SfA educators modeled using the Smart Moves both as ground rules, reviewed before any activities or taxing mathematics, and as facilitation strategies, guiding small group work. On an annual basis SfA’s materials were revised and updated. SfA educators reviewed and tweaked the wording of the Smart Moves at these junctures in order to be in synch with organizers’ sensibilities. Smart Moves were popular with several environmental organizers who posted them, read them aloud, or modeled them in their work with community members. During community group meetings and conference sessions, organizers regularly preceded activities on environmental data with a review of the Smart Moves. This practice was not mandated, but rather left to organizers, who generally posted and mentioned the Smart Moves at formal workshops. In meetings in living rooms with fewer than 10 people, explicit references to Smart Moves were less common.

Slow down; Talk it out

These moves invite exploring the implications of numbers. Even if several members of a group can quickly convert measurements in micrograms to parts per billion, the group should take time, slowing down to make sure everyone follows. In so doing, participants have a chance to absorb the full impact of the quantities. Smart Moves can also be shared in advance with experts, academics, and regulators scheduled to present to community members. When experts, academics, and regulators present to community members, “slow down” reminds them to pause as they rattle off numbers, letting the audience absorb a statistic before stating the next one. “Talk it out” reminds everyone that in this setting people can talk and laugh, work alone or with others, and clarify their thinking by explaining aloud to a peer.

Connect ideas to what people already know; Appeal to the senses; Show numerical relationships in more than one way

Relating to something familiar is an effective strategy for taking in new information (Willingham 2010) and makes ideas stick. Props as well as tactile experiences make a lasting impression. A Sweet’N Low™ packet conveys the weight of one gram more quickly than words can. A visual aid or physical object grounds understanding of amounts relative to one kilogram (especially handy in the world of milligrams per kilogram). Presenting numerical relationships in more than one way (using raw numbers, percentages, ratios in simplest terms, and approximate fractions as well as analogies and props) invites people who are not so proficient with mental math to visualize the relationships.


Choosing the right level of precision is something community group members talk about as they craft messages. Groups have to be strategic. They base their arguments on numbers from sources such as the Centers for Disease Control, annual reports or press releases from facility owners or proposers, or from an environmental impact statement. The stakes are high; credibility is on the line. If a community group or organizers disseminate information that is subsequently shown to be false, they are discredited and dismissed. The Smart Moves thus include advice to verify claims and findings.

Besides dispelling excuses about not being good at math, the Smart Moves made explicit the expectations for participating in an SfA activity. Smart Moves introduced a way of doing math distinct from the school experience common to most adults, in which silence was expected, dialogue discouraged, and reasoning out a problem with another student was interpreted as cheating. The Smart Moves can be used for problem solving in any domain. Below we explain how they were relevant to environmental organizing. Some organizers quickly adopted the Smart Moves, seeing them as a bridge or transition to activities. One organizer said:

“Having an environmental studies background doesn’t prepare you to be a teacher. As a quasi-teacher, it was very helpful to have the Smart Moves. They were a reminder to the community members of how to tackle the math and science, and taught everyone, including me, very quickly what to do and what not to do.”

Messaging Activities

Community groups’ main focus is to convince others of the need for action. Finding effective ways to share data on environmental conditions is clearly central to the work. The Memorable Messages activity sparks discussions on effective communication. It also encourages slowing down while modeling the use of different numerical representations. For this activity, everyone in the group reads one environmental fact and alternative versions restating that fact. The facilitator asks everyone (in pairs) to speak to the statements: Which one makes the most powerful impression? Which one is least impressive to you?

Once organizers facilitated Memorable Messages, they engaged group members in crafting and discussing alternate messages for the local campaign. When confronted with unwieldy quantities or units, one strategy is to scale numbers up and down until one finds a quantity in a unit that is easier to grasp or that uses some familiar element so that the unwieldy quantity makes a strong impression. The next step is to situate these quantities in a context/in a statement that makes it easier for the audience to imagine the impact. Participants stated and restated amounts and relationships, reflecting on the impression that each statement made.

For example, participants restated a fact about emissions from a proposed biomass incinerator. The permit stated that the facility could emit up to 246.8 tons per year of carbon monoxide, nitrogen oxides, and sulfur dioxide. With the population of the host county at hand, the group adjusted time and quantities, generating and critiquing versions of the original fact, such as

  • About a pound of carbon monoxide per person in the air all the time.
  • Figure out how much CO is in one cigarette. Say it’s like smoking X cigarettes.
  • Inhaling 13 pounds of each of these pollutants per day per person.
  • The amount per day works out to one can of toxic soup.
  • Imagine the fifteen pounds of carbon monoxide and other chemicals sitting on your head for 365 days a year. That’d have an effect on you!

Participants debated the pros and cons of each statement. One person said 0.13 pounds didn’t sound impressive. Fifteen pounds of carbon monoxide was impressive-sounding, but a “can of toxic soup” was easier to visualize. Discussions with attention to quantity, analogies, and scale became a routine part of environmental organizers’ work with community groups, often followed by conversations to further refine a statement and verify the claim with an expert.


Notes from meetings and calls documented organizers’ enthusiasm and efforts as well as their resistance to facilitating certain activities. Among activities that were ignored or rejected were those that needed props, extensive set-up, had accompanying worksheets that organizers deemed elementary in look or content, and those that involved practice without a clear connection to moving the campaign forward. Project partners initiated a set of practices focused on messaging and communication, which were perceived as useful by organizers

and participants. When asked for feedback on a short survey, participants in workshops and trainings were positive and confirmed the potential impact of the SfA resources. Of the 187 surveys collected in the project’s final year, ninety percent of participants agreed that doing an SfA activity gave them more confidence to speak about the topic; sixty percent (n=183) felt confident in understanding the issue after the activity compared with twenty-eight percent before (Connors et al. 2013).

Organizers persuaded STEM educators that activity names and goals had to have a mission-based, campaign-focused objective. SfA’s educators worked to convince organizers that examining and incorporating data could strengthen the points that organizers were hoping to make through stories. In fact sheets, testimony, press releases, and in-person conversations, community members needed to weave numbers and stories into their communications. A community organizer commented on her transformation: “I tended to gloss over these issues before because they overwhelmed community members. Now I have a set of tools to address sorting out numbers, messaging, figuring out how to make sense of data and communicate risk.”

Collaboration resulted in more conscious, intentional use of data during meetings, leading community members to listen for sound bites they would use in communicating with others on environmental topics. The project’s external evaluators found that adding facilitating science and math learning to their repertoire of assistance to community groups was doable but not trivial for organizers. See Arbor Consulting Partners Evaluation of Statistics for Action Final Report (Connors et al. 2013) for more detail. There is much work to be done to understand who gets up to speed and how. We concur with Lemke et al. (2015), who call for assessment strategies that could capture know-how and know-who as well as know-that. Assessment should examine evidence that knowledge is being used and that this use persists, grows, and cumulates over relatively long periods.


Working alongside environmental organizations can have a huge payoff for STEM educators interested in reaching underserved audiences, including rural and inner city residents with limited formal education. Though community members may expect that educators will do all the math and understanding for them, the opportunities for collaborative teaching and learning are authentic, as all group members have relevant experience or knowledge to contribute, even though most do not have technical expertise or formal education in environmental science.

SfA was founded on the premise that all group members can contribute to the scientific and mathematical aspects of the work involved in environmental organizing. From its inception, the project has sought ways to expand the number of individuals investigating the math and science from one or two to the wider group. Smart Moves were a tangible signal that everyone could step onto the playing field. Our experience is that certain practices and approaches are a useful starting point for collaborations centered on environmental campaigns. SfA activities and resources are free and online (, available to support environmental organizers who want to facilitate math and science understanding. The materials are relevant for educators and others interested in using environmental data sets in the classroom. Each activity includes a facilitators’ sheet with information like the skills addressed, suggestions for launching and debriefing the activity, and hints for preparation, as well as the most salient Smart Moves.

Organizers’ role in this transformative work is critical. We leave the last word to an organizer who benefitted from approaches generated by the SfA collaboration of organizers and STEM educators.

My general orientation before this project was that those sorts of fact and figures–we don’t really want to tell those in our story, people don’t understand them, we don’t have the tools to understand them…. 

I’ve had a small but fundamental shift in my orientation in thinking about and telling the stories of the campaign that we’re working on…. I think that in general, figuring out how to describe problems and solutions when it comes to pollution and environmental health using numbers and coming up with powerful messages and powerful details to help flesh out the story is helpful for campaigns (Connors et al. 2013).

About the Authors

Martha Merson led the Statistics for Action project at TERC, a not-for-profit STEM learning and teaching research organization. She is a long-time adult numeracy educator, co-author of the Extending Mathematical Power (EMPower) curriculum series for adult learners. She has worked both with environmental organizers and adult educators to equalize access to scientific information and math learning.

Selene Gonzalez-Carrillo worked as the Open Space Coordinator for Little Village Environmental Justice Organization before taking on the role of Outreach Consultant for Statistics for Action. She is currently pursuing her master’s degree in Environmental Education at the University of Guadalajara, Mexico.

Ethan Contini-Field was a research associate and curriculum designer for the Statistics for Action project at TERC from 1998–2013. He designed and field-tested activities and edited print resources for the project. He now works as an Online Course Developer for the Harvard University Division of Continuing Education.

Meredith Small was Executive Director of Toxics Action Center between 2009 and 2012, when she joined with Statistics for Action as a lead partner. Meredith spent over a decade as a environmental and political organizer before attending Harvard Law School, where she is currently pursuing her J.D.


Allen, S., and J.P. Gutwill. 2011. “Visitor Research and Evaluation in a Science Museum Context.” Presentation at Lesley University, Cambridge, MA.

Bullard, R.J., ed. 1993. Confronting Environmental Racism: Voices from the Grassroots. Cambridge, MA: South End Press.

Connors, M., M. Fried, and M. Taylor. 2013. “Evaluation of Statistics for Action (SfA): Final Report.” pdfs/Arbor_final_SfA_Report.pdf (accessed June 23, 2016).

Faber, D.R., and Eric J Krieg. 2002. “Unequal Exposure to Ecological Hazards: Environmental Injustices in the Commonwealth of Massachusetts.” Environmental Health Perspectives 110 (Suppl. 2): 277–288.

Goodman, M., R. Finnegan, L. Mohadjer, T. Krenzke, and J. Hogan. 2013. “Literacy, Numeracy, and Problem Solving in Technology-Rich Environments Among U.S. Adults: Results from the Program for the International Assessment of Adult Competencies 2012: First Look” (NCES 2014-008). Washington, DC:

U.S. Department of Education. National Center for Education Statistics. (accessed June 23, 2016).

Halversen, C., and L.U. Tran. 2010. “Communicating Ocean Sciences to Informal Audiences: A Scientist-Educator Partnership to Prepare the Next Generation of Scientists.” The New Educator 6 (3–4): 265–279.

Lemke, J.L., R. Lecusay, M. Cole, and V. Michalchik. 2015. “Documenting and Assessing Learning in Informal and Media-Rich Environments” Cambridge, MA: MIT Press. http://lchc.ucsd. edu/MacArthur-Learning-Report_2012-12.pdf (accessed June 23, 2016).

Scammell, M.T., and G.J. Howard. 2013. “Is a Health Study Right for Your Community? A Guide for Making Informed Decisions.” (accessed June 23, 2016).

Willingham, D. 2010. “Ask the Cognitive Scientist: Is It True That Some People Just Can’t Do Math?” American Educator 33 (4): 14–29.

Download (PDF, 785KB)