Archives

Community-Engaged Projects in Operations Research

 

Abstract

Community-engaged learning is not very common in technical fields, but including relevant projects in courses can make it feasible and successful. We present an implementation of an operations research course at a liberal arts college. Working with one of four nonprofit community partners to optimize aspects of their organization, students gained insight into relevant, real-world applications of the field of operations research. By considering many aspects of their solution when presenting it to community partners, students were exposed to some issues facing local nonprofit organizations. We discuss the specific implementation of this course, including both positive learning outcomes and challenging factors.

Introduction

Operations research, a “discipline that deals with the application of advanced analytical methods to help make better decisions” (INFORMS 2017), is used by many organizations. Southwestern University, a small liberal arts college, offers an operations research course cross-listed as business, computer science, and mathematics, which broadens opportunities for students to take computer science courses (Anthony 2012). While civic engagement is popular in colleges, its incorporation into the classroom is less prevalent in STEM disciplines (Butin 2006). Though some computer science courses incorporate community-engaged learning, it frequently occurs in a senior capstone experience (Bloomfield et al. 2014). An interdisciplinary course taken before the senior year can provide more realistic experiences in working with people from different backgrounds. Project-based courses are not uncommon in operations research; colleges are sometimes even paid by outside corporations for such projects (Martonosi 2012).

The operations research course’s popularity and increasing support on campus for community-engaged learning worked synergistically to have projects proposed by local community partners (nonprofit organizations) in 2014. The Southwestern University Office of Civic Engagement (OCE) helped facilitate these projects by aiding in the solicitation of partners, providing continuing education to the faculty member, and providing a student Community-Engaged Learning Teaching Assistant (CELTA), whose duties included serving as a liaison between student groups and community partners. The CELTA was a computer science major who had previously taken courses with the instructor and had worked for the OCE for multiple semesters. Together, the instructor and CELTA investigated the value that students found in the project experience, in terms of both more traditional goals of community-engaged learning and the content typical of an operations research course. In the four projects, students partnered with a hippotherapy organization, a local chamber of commerce, and two units on campus.

Methods, Projects, and Partners

Students engaged in a semester-long team project partnering with local nonprofit organizations to solve a problem in need of optimization. Four student teams, working both in class and on their own time, submitted a proposal, a poster with preliminary results, and a final report including an executive summary and full technical details. They also made a final presentation to classmates, the professor, and their community partners. The course is typically a student’s first introduction to operations research. Thus, students are learning the basics of the field while simultaneously applying the ideas presented in the course to their project with the community partner. Both quantitative and qualitative data were collected from students about their experiences, with approval from the university’s Institutional Review Board. Students were asked identical questions about their attitudes toward community service in general, taken from Bringle’s (2004) The Measure of Service Learning: Research Scales to Assess Student Experiences, before project groups were assigned and at the end of the semester, while final project reports were being prepared. All answers were given on a 1–7 Likert scale of likelihood (extremely unlikely to extremely likely) or agreement (strongly disagree to strongly agree). The qualitative data was collected from multiple sources, including meetings with the instructor and CELTA, peer and self evaluations, final exam questions, and course evaluations.

Two of the community partners came from area nonprofit organizations: Ride On Center for Kids (R.O.C.K.), a hippotherapy organization, and the Greater Leander (Texas) Chamber of Commerce. The other two partners were internal to the university: the Center for Academic Success and Records (CASAR) and the directors of the new incarnation of Paideia, an interdisciplinary curriculum program unique to Southwestern.

R.O.C.K. “provides equine-assisted therapies and activities to children, adults, and veterans with physical, cognitive, and emotional disabilities” (R.O.C.K.). R.O.C.K. aims to serve as many clients as possible while using limited resources (including staff, arena time, and horses) appropriately. Clients’ needs determine whether the therapy sessions are individual or small groups. Students formulated appropriate linear programs for modeling the constraints and objectives, and analyzed the solutions under various assumptions (such as the number of hours a horse can be used each day or week). They recommended that R.O.C.K. alter operating hours to better utilize resources while still serving the same number of clients and prioritize the acquisition of additional horses.

The Leander Chamber of Commerce (LCC) has four membership plans, with different prices and benefits. As a nonprofit, they want to be sustainable while providing value to their members. Students first used linear programming techniques to determine optimal pricing for each of the plans while keeping the same benefits, under the limiting assumption that members would stay on the same plan. They then used knapsack problem techniques to determine the ideal combinations of benefits in the plan that provide the most perceived value to the members for a given cost. As costs and perceived values change and new benefits are considered, LCC can use provided software tools to update offerings.

Currently at Southwestern, academic advisor/advisee assignments are made manually, a time-consuming and suboptimal process. Students worked with the Center for Academic Success and Records to convert their process into a flowchart, assigning measures for compatibility based on stated academic interest and predictors of transitional challenges. The assignment can now be considered as a transportation problem, maximizing the compatibility indicators of the entire incoming class while limiting the number of advisees assigned to any one advisor. The team used a Java program to parse data about students, fed that information to a tool called glpsol within the Gnu Linear Programming Kit (GLPK), to solve the transportation problem, and again used Java to present the output cleanly.

Beginning in Fall 2014, as part of a reconfigured Paideia program, all students are part of an interdisciplinary cluster, making connections across disciplines through a subset of required courses. There are numerous tradeoffs to be considered, for faculty, students, and the university as a whole, when considering the ideal number of clusters, courses, and faculty per cluster. Students developed an Excel tool to model these relationships that will be used by present and future Paideia directors in their decision making. Their recommendation of three new clusters per year provided an ideal balance of number of courses available to students and faculty in the cluster, while allowing for changes in class size in future years.

The creation of groups in a course project often poses an interesting dilemma. Each group had at least one person from each of the three predominant majors represented in the course: computer science, math, and business or economics. For the projects where it was anticipated that higher-level programming languages would be used (as opposed to Excel), multiple computer science majors were assigned. Students were required to complete a questionnaire with questions including their preferences among the projects, their willingness or ability to work with an off-campus partner, and published personality questions in a STEM text (Burger 2008). The instructor and CELTA then assigned groups, based on those responses and their prior experiences in the classroom.

Research on Student Experiences

In the following table, we report some of the statements that most students agreed or strongly agreed with. We also note that most disagreed with the claim “without community service, today’s disadvantaged citizens have no hope.”

Responses to the final survey were largely similar to the preliminary survey with regard to the number of students who felt an outcome was likely or agreed with a statement, but when quantified as described above, many of the averages for each question fell. (Given the small sample size, 21 students, we look more at general trends than actual numbers.) The other statements in Table 1 changed by at most 0.1 points.

The differences in the average responses are small. Students answering less enthusiastically (e.g., “somewhat likely” instead of “likely” or “agree” instead of “strongly agree”) may have felt no differently in the final survey and simply had a hard time discretizing their response. Alternatively, a slight decrease in enthusiasm in final responses may be indicative of end-of-semester fatigue. As students typically did not interact directly with clients of the nonprofit partners, they might not have been able to see the outcomes and benefits of their projects. They might have also recognized that many clients served by their partners are not socio-economically disadvantaged and perhaps not people whom they would see as “in need.”

Since team dynamics can play an important role in the success (or lack thereof) in any group project, students periodically evaluated the contributions of their group members. They rated each group member on a scale of 0 to 4, including themselves, indicating whether they were a team player, the amount of effort put forth, whether they were dependable, their intellectual contribution, and their overall contribution. Student were told that specifics would not be shared with the group members, but the instructor would be speaking with anyone who did not seem to be contributing adequately, in an effort to allow them to improve their performance. Additionally, evaluations would be considered in calculating each student’s participation grade, but except in extreme cases, would not affect the project grades. The provided instructions and reminder that it is highly unlikely that everyone is excellent at everything seemed to lead students to give considered answers. In addition, they wrote a single sentence for each group member (including themselves) about their overall impression of said member’s performance. These comments typically suggested most group members were pulling their weight. Sometimes their disciplinary backgrounds meant they were a stronger contributor in one area than another. For example, a student who had more accounting experience might be especially skilled at reading financial statements and explaining their contents to others who have more programming experience. This exercise, along with in-class discussions, seemed to help mitigate some of the tensions that occasionally arose with the differences between majors/backgrounds.

The final exam included questions eliciting the benefits and drawbacks of having a group project with a community partner. A few students felt the group project prevented them from learning additional course material because of the time devoted to working on the project. However, most enjoyed delving into a large and real problem.  One student noted that “it exposed us to another learning method,” another said through the projects students “saw applications of theory which reinforced the ideas learned in lectures,” and a third indicated that “‘What can I do with this class/theory?’ actually gets answered.” (In accordance with the IRB consent forms, student quotes are not being attributed to specific individuals.) While many people often think of the benefits of operations research first in terms of money (whether increasing profit or cutting costs), the projects helped students focus on other things that can be optimized, as illustrated in this response: “The group projects gave much more of a feel of the complexities of optimizing real world situations, particularly when profit is not the most important quantity to an organization.” Other students talked about the benefits of the project being in the “real world,” and of working in teams similar to their anticipated future work environments. A student summed up much of the motivation for doing the group project with community partners in the observation that “reading case studies or doing fictitious projects does not provide the same sense of urgency and rewards as doing a project for someone who can actually benefit from it.” The student comments echo many of the benefits purported in literature about community-engaged teaching, including deeper understanding of course material and the ability to transfer knowledge (Furco 2010).

Most drawbacks students reported were logistical in nature, either with their group members or community partners. Frequent concerns were difficulty scheduling meetings (with or without the community partner) and having access to information. One indicated that “people bringing different backgrounds was a benefit in tackling our project, but it was hard to balance the work and make sure everyone pulled equal weight,” which led to concerns about receiving a group grade for the project (cumulatively, twenty-five percent of the final course grade). Another stated that community partners “did not fully understand the benefits and applications an OR student can provide” and had nebulous expectations, whether expecting too much or too little. Only a few students indicated a concern that the project resulted in “less time learning concepts with the professor,” and most viewed the experiential learning as likely to be retained longer. Most students indicated a desire to keep this component of the course.

Just as the small sample size limits statistical analysis, the frequency of the course offering (typically once every two or three years) and the varying nature of the projects and partners limit meaningful longitudinal studies. One wonders whether such projects increase student engagement and satisfaction, possibly with positive impacts upon retention and graduation. Anecdotally, all non-visiting students in the course have in fact graduated from Southwestern, but given that the students were typically juniors or seniors, that is unsurprising. Likewise, with the variety of majors enrolled and the differences in the projects, other assessments of impacts on overall academic performance are limited. However, in the future it may be possible to determine whether there is a correlation between students’ performance on exams and the specific skills and techniques used in their projects.

Discussion: CELTA, Community Partner, and Instructor Reflections

Each team met with the CELTA three times. The first meetings were primarily introductory in nature. Each group had held its first meetings with community partners and was involved in initial planning stages. The two groups working with on-campus partners both had a strong start, with detailed plans in place to find their solutions. Likely because of the connection to campus and the professor’s connection to these projects, the expectations were communicated more clearly than those tied to the projects that were based off campus. In contrast, the off-campus partners had more of a vision to be interpreted than a concrete plan to be executed. Though students are often more comfortable with precise directions, the real-world experience of uncertainty and ambiguity is quite valuable.

In the second round of CELTA meetings, group members were still excited but now had some concern about partially completed projects and looming deadlines. The groups had all made substantial progress and were working on posters to be presented at a campus symposium. Three of the four groups were now experiencing more of the challenges of a real-world project, where the scope or goals can change over time. The Academic Advising group felt that some of the partner’s requests were growing beyond the original requirements, but had difficulty scheduling face-to-face meetings to discuss the limitations. The Paideia group had the fewest communication obstacles, likely because the primary contact is a professor in the math department. As such, many group members already had a working relationship with her, and would often drop by her office for immediate feedback.

At this point, groups had already considered the obvious stakeholders, but were now asked to reflect further on the non-obvious stakeholders affected by their project, which can be equally important when modeling problems. The Academic Advising group had identified students and professors as the obvious stakeholders, with counseling services and parents as non-obvious stakeholders; both are concerned with students’ overall well-being and stress levels, which can be impacted by advising. The Paideia group noted students as the obvious stakeholders, and considered professors as non-obvious stakeholders, due to teaching load and leave considerations. The projects with off-campus partners, not surprisingly, had different stakeholders, with interesting implications. The member working with R.O.C.K. identified the horses as a non-obvious stakeholder. While meeting the needs of obvious stakeholders (the clients, and if they are minors, their parents), it is important to ensure that the horses do not get overworked. Accordingly, group members had to familiarize themselves with seemingly restrictive regulations that R.O.C.K. adheres to concerning the number of hours a horse should work per day and needed to incorporate those into their problem formulation and solution. For the LCC, member organizations are obvious stakeholders, and group members identified residents of Leander as non-obvious stakeholders, since each new resident of Leander receives a directory of businesses that are chamber members, and said membership confers certain credibility. In all groups, students realized that projects can have far broader impacts than initially considered.

The final round of CELTA meetings occurred toward the end of the project, while groups were finalizing their linear programs and solutions and writing their final paper. The completed project portfolio was provided to the instructor and the community partner, and each group gave a final presentation to the entire class, inviting their community partners to attend. While not all partners were able to attend, the possibility that the partner would be present ensured that students had to thoroughly motivate the assumptions made for the project and explain why they were reasonable. All groups already had experience presenting as a team from the campus symposium. Additionally, the poster presentations had increased student enthusiasm when they realized how interested their peers and faculty were in their projects. This was especially true for the groups working with on-campus community partners; students and faculty were able to ask specific questions because they were already familiar with Paideia and the Academic Advising process, which alerted members of these groups to issues with their solution that they might not have previously considered. Many group members talked about broader implications of their projects. A Paideia group representative considered optimizing Paideia to be part of the legacy he leaves behind upon graduation. The R.O.C.K. representative appreciated that the project had relevant business applications, and was excited to be able to apply the knowledge learned in the real world. Overall, group members expressed the opinion that it was a positive, albeit challenging, experience.

During the semester, morale was often correlated with the level of engagement of the community partner; groups that maintained good communication with their partner felt more positive about their projects. Communication challenges occurred with both on- and off-campus partners. While the instructor reassured students that projects could earn good grades despite incomplete partner information (with students making reasonable assumptions based on the information they did have), students naturally wanted to deliver products that met their and their community partner’s expectations. Groups that believed their partner would implement the proposed solutions were more satisfied with the experience; yet implementation was not always feasible for the partner. Not surprisingly, when a community partner is more invested in a project, a group often does better work. Accordingly, in future offerings the instructor will have more up-front discussions with both the students and the partners about how to facilitate such communication and commitment.

All community partners gave positive feedback about the work completed by the students. The LCC president has benefitted from the tools (e.g. Excel spreadsheets that are easily updatable without any operations research background), the analysis from students, and recommendations from the group about plan offerings and costs. Likewise, R.O.C.K. appreciated the information and made plans to present it to their board. However, like many nonprofit organizations staffed primarily by part-time employees and volunteers, R.O.C.K. experiences frequent staff turnover; the main project contact left the organization shortly after the project was completed, so follow-up has been limited. Likewise, a new director for the Paideia program was selected from the faculty shortly before the class project was completed; she has since used the spreadsheet and tools created and has given positive feedback.

The tools for assigning advisors to advisees require ongoing updates and maintenance by people with sufficient Java knowledge to reflect annual changes such as the number of advisees an advisor currently has. In addition, since the students who need to be assigned are new each year, there is some data processing involved in converting the information students provide on a web form into the format needed for the Java programs and GLPK. Full implementation has not yet happened for various reasons unrelated to the course, but there is support from CASAR staff for eventual usage, and the instructor is willing to do the updates.

One final exam comment was positive overall about the project, but the student wished that the group had “had more time to do more.” This issue of the semester-long lifetime of the project is an issue the instructor continues to struggle with. While the deliverable at the end of the semester is expected to be useful to the community partner, often some continued involvement with the partner after implementation would be ideal. Some students may be able to continue the partnership as an independent study, allowing the community partners to have the model refined as they realize limitations, whether due to assumptions the students had to make or to factors that were not readily known in the original problem.   

We believe that these projects are in fact rightfully viewed as partnerships, with students acting in a consulting role for the organizations. While there are inherent dangers in community-engaged learning programs that try to “fix” what is “wrong” with a community (Cooks 2004),  the partners themselves responded to offerings of these optimization services, and they chose the problem or issue. And of course they also remain in control of how the resulting information is used. Though the instructor and students did have a role in deciding which projects were selected—which does confer a degree of power (Mitchell 2008)—choices were largely based on suitability of the problem for the course (i.e. an optimization problem, not a website redesign). The concern about developing tools without providing people and resources to maintain them long-term, paralleling the concerns of do-gooders who impose their will on others, is worth acknowledging (Illich 1968). We are up-front with the community partners about the time span and limitations, aim to provide useful tools that are easily modifiable, and typically use software (frequently Excel) that their organization already uses.

Partners greatly valued the community-engaged learning relationships with the university, but, consistent with the literature, logistics (student schedules) and communication issues are not easy to overcome (Vernon and Ward 1999). While partners were invested to some degree in the projects, the projects were not their highest priority (nor were they expected to be). The instructor can be more proactive in future years about outlining the expected time commitments and flexibility needed to both the partners when selecting projects and the students when they register for the course. Having tangible results from the 2014 offering may make it easier to solicit future projects, and partners may be more invested when they have a fuller understanding of expected benefits. 

Conclusion

This Operations Research course was a productive and positive experience for students and community partners alike. Students benefitted from the hands-on project that required them to apply their knowledge outside of the typical classroom, and gained experience working and solving problems in a large group. The Community-Engaged Learning Teaching Assistant and instructor witnessed student learning in and out of the classroom, and they were able to educate students about community-engaged learning in general while further motivating course content. Finally, the community partners each received a solution to a problem from skilled students, which further strengthened the partnership between Southwestern University and the Georgetown community.

The instructor is committed to continue offering this course with nonprofit partners. Since ideally each project ends with a “solved” problem, partners will often differ from year to year, unlike many community-engaged learning courses which are able to work with the same partners for extended periods of time. Yet organizations may have new problems in mind that are in need of optimization, and can be partners in future offerings. Including presentations from community partners early in the semester could be beneficial, since passion about a project often leads to stronger teamwork, dedication, and enthusiasm about the experience. Though there will always be logistical challenges in courses of this nature, offering a community-engaged learning component in an operations research course is a worthwhile endeavor that results in beneficial learning outcomes and hands-on experience for students, and in tangible products for the partners.

Acknowledgments

Thanks to Dr. Sarah Brackmann, Director of Community-Engaged Learning at Southwestern University, and to the community partners and their primary contacts: Bridget Brandt (LCC), Jerry Fye (R.O.C.K.), Dr. Alison Marr (Paideia), and Kim Morter (Center for Academic Success and Records).

About the Authors

Barbara M. Anthony, (anthonyb@southwestern.edu), the instructor for the operations research course, is an Associate Professor of Computer Science at Southwestern University in Georgetown, Texas. She received her PhD in Algorithms, Combinatorics, and Optimization from Carnegie Mellon University in 2008. She is active in the computer science education community, with a particular interest in introducing students from underrepresented groups to the discipline, and finds ways to bring her theoretical computer science interests into multiple courses.

Kathryn M. Reagan, (kathryn.m.reagan@gmail.com), the CELTA for the operations research course, is a class of 2016 graduate of Southwestern University in computer science. She is currently a consultant software developer for ThoughtWorks. Her passions lie in social and economic justice and computer science education, and she loves finding ways to work within the intersection of those passions.

References

Anthony, B. 2012. “Operations Research: Broadening Computer Science in a Liberal Arts College.” Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE ’12): 463–468.

Bloomfield, A., M. Sherriff, and K. Williams. 2014. “A Service Learning Practicum Capstone.” Proceedings of the 45th ACM Technical Symposium on Computer Science Education (SIGCSE ’14): 265–270.

Bringle, R., and M. Phillips. 2004. The Measure of Service Learning: Research Scales to Assess Student Experiences. Washington, DC: American Psychological Association.

Burger, E. 2008. Extending the Frontiers of Mathematics: Inquiries into Proof and Augmentation. Hoboken, N.J.: Wiley.

Butin, D. 2006. “The Limits of Service-Learning in Higher Education.” The Review of Higher Education 29 (4): 473–498.

Cooks, L., E. Scharrer, and M.C. Paredes. 2004. “Toward a Social Approach to Learning in Community Service Learning.” Michigan Journal of Community Service Learning 10 (2): 44–56.

Furco, A. 2010. “The Engaged Campus: Toward a Comprehensive Approach to Public Engagement.” British Journal of Educational Studies 58 (4): 375–390.

Illich, I. 1968. “To Hell with Good Intentions.” Address, Conference on Inter-American Student Projects (CIASP), Cuernavaca, Mexico, April 20, 1968.

Institute for Operations Research and the Management Sciences [INFORMS]. 2017. “What is Operations Research?” https://informs.org/About-INFORMS/What-is-Operations-Research (accessed May 27, 2017).   

Martonosi, S. 2012. “Project-Based ORMS Education.” In Wiley Encyclopedia of Operations Research and Management Science, J. Cochran, ed. Hoboken, N.J.: John Wiley & Sons.

Mitchell, T.D. 2008. “Traditional vs. Critical Service-Learning: Engaging the Literature to Differentiate Two Models.” Michigan Journal of Community Service Learning 14 (2): 50–65.

R.O.C.K. (Ride On Center for Kids). www.rockride.org (accessed May 27, 2017).

Vernon, A., and K. Ward. 1999. “Campus and Community Partnerships: Assessing Impacts and Strengthening Connections.” Michigan Journal of Community Service Learning 6: 30–37.

Download (PDF, 269KB)

 

The Draw-an-Ecosystem Task as an Assessment Tool in Environmental Science Education

Robert M. Sanford, University of Southern Maine
Joseph K. Staples, University of Southern Maine
Sarah A. Snowman, University of Southern Maine

Introduction

Environmental science is a broad, interdisciplinary field integrating aspects of biology, chemistry, earth science, geology, and social sciences. Both holistic and reductionist, environmental science plays an increasing role in inquiry into the world around us and in efforts to manage society and promote sustainability. Mastery of basic science concepts and reasoning are therefore necessary for students to understand the interactions of different components in an environmental system.

How do we identify and assess the learning that occurs in introductory environmental science courses? How do we determine whether students understand the concept of biogeochemical cycling (or “nutrient cycling”) and know how to analyze it scientifically? Assessment of environmental science learning can be achieved through the use of pre- and post-testing, but of what type and nature?

Physics, chemistry, biology, and other disciplines have standardized pre- and post-tests, for example Energy Concept Inventory, Energy Concept Surveys; Force Concept Inventory (Hestenes et al. 1992); the Geoscience Content Inventory  (Libarkin and Anderson 2005); the Mechanics Baseline Test; Biology Attitudes, Skills, & Knowledge Survey (BASKS); and the Chemistry Concept Inventory (Banta et al. 1996; Walvoord and Anderson 1998). Broad science knowledge assessments also exist, notably the Views About Science Survey (Haloun and Hestenes 1998). Some academic institutions have developed their own general science literacy assessment tool for incoming freshmen (e.g., the University of Pennsylvania [Waldron et al. 2001]).  The literature abounds with information on science literacy. The American Association for the Advancement of Science (AAAS) and the National Science Teachers Association (NSTA) are leaders in developing benchmarks for scientific literacy (AAAS 1993; www.NSTA.org).

Perhaps the closest standardized testing instrument for environmental science is the Student Ecology Assessment (SEA). Lisowski and Disinger (1991) use SEA to focus on ecology concepts. The SEA consists of 40 items in eight concept clusters; items progress from concrete to abstract, from familiar to unfamiliar, and from fact-based (simple recall) to higher-order thinking questions. Although developed principally for testing understanding of trophic ecology (plant-animal feeding relationships), this instrument can be used in most ecology or environmental science classes, even though it does not address all aspects of environmental science (for example, earth science, waste management, public policy).

The Environmental Literacy Council provides an on-line test bank that can be used for assessment (http://www.enviroliteracy.org/article.php/580.html).  Results of this and other instruments suggest that the average person’s environmental knowledge is not as strong as he or she thinks (Robinson and Crowther 2001). Environmental knowledge assessment may help us to determine what additional learning needs to be done in creating an environmentally literate citizenry—an important public policy task (Bowers 1996).  However, a major reason for assessing environmental knowledge is to improve teaching. If we can assess how students conceptualize an ecosystem at the start of a course, then we can measure the difference at the end of the course. Additionally, understanding what knowledge they possess at the start of a course will help us expand their knowledge base in a manner tailored to their initial understandings and their needs.

The challenge lies in deriving a rapid assessment tool that will help determine abilities to conceptualize and that also has comparative and predictive value.  It is quite common in environmental science courses to ask students to draw an ecosystem—it can be done as an exam question, as homework, or as an in-class project.  Virtually all environmental science textbooks contain illustrations of ecosystems.  An environmental laboratory manual we frequently use (Wagner and Sanford 2010) asks students to draw an ecosystem diagram as one of the assignments. But what about examining how the students’ drawings illustrate growth in knowledge and understanding—their ability to use knowledge gained and to communicate ecological relationships in a model?  We needed an instrument that provided immediate information, could be contained on one page, would not take a lot of class time, and that did not look like a test. The draw-an-ecosystem instrument meets those criteria, but there is a price: the difficulty of quantifying and comparing the drawings. It seemed a worthwhile challenge to work those bugs out, and even if that proved to be impossible, the students themselves could see the increased ecological sophistication of their drawings and would experience positive feedback from the change.

The Draw-an-Ecosystem Approach

Figure 1: A representative ecosystem drawing from the first day of class

Our approach is to use a pre-test and post-test in which students draw and label an ecosystem, showing interactions, terms, and concepts (Figure 1 and Figure 2).  The assignment is open-ended. We hand out a page with a blank square on it and the following directions:

Date_______. Course ________. Please draw an ecosystem in the space below. It can be any ecosystem. Label ecosystem processes and concepts in your diagram. Take about 15 or 20 minutes. This will not be graded, it isn’t an art assignment, and the results will be kept anonymous.

We tried out this assessment in our graduate summer course in environmental science for sixth–eighth grade teachers (even short-term courses can produce a change in environmental knowledge according to Bogner and Wiseman [2004]) and in our Introduction to Environmental Science course.  We developed a rubric to evaluate and score the pre- and post-test ecosystem diagrams drawn by students.  The rubric included eight categories, each with a 0–3 score, where 0 represented no display of that category and 3 represents a comprehensive response. The categories, labeled A-H, cover ecosystem aspects (listed below). Certainly, not all eight categories are equal, nor should they be equally rated or represented; however, since we are examining pre- and post-course conceptualization of ecosystems, the comparative value of the scoring remains, and we decided it was reasonable to sum the category scores for a final score. Accordingly, the maximum possible score was 24. The scores were then compiled and analyzed to determine whether there was a statistically significant difference in pre- and post-test scoring.

Figure 2: Typical drawing of an ecosystem at the end of a semester-long environmental science course

To interpret the student ecosystem diagrams, we examine the following factors:

  • Presentation of the different spheres (hydrosphere, atmosphere, biosphere, geosphere, and cultural sphere)
  • Proportional representation of species and communities
  • Recognition of multiple forms of habitat and niche
  • Biodiversity
  • Exotic/invasive species
  • Terminology
  • Food chain/web
  • Recognition of scale (micro through macro)
  • Biogeochemical (nutrient) cycles
  • Earth system processes
  • Energy input and throughput
  • Positive and negative feedback mechanisms
  • Biological and abiotic interactions and exchanges
  • Driving forces for change and stability (dynamics)

Initially we used the above factors as a guide in interpreting the drawings and comparing the pre-test and post-test drawings for each student—we did not compare one student’s work with another. However, if the ecosystem test can become a valid and reliable standardized assessment, then comparison makes sense and will inform how an entire course makes a difference in student learning rather than just the progress of an individual student.  Accordingly, we developed a scoring rubric (Table 1).

In determining the categories and weights for each scoring rubric, we consulted three other environmental science faculty with experience in teaching an introductory environmental science course. We sought a scale for which both beginners and professionals would achieve measurably distinct scores. To ensure objectivity, we scored multiple examples before settling on the final rubric elements and weights.  This is similar to the norming approach used by the College Board in scoring Advanced Placement (AP) Environmental Science exams. The final scores reflect a student’s holistic understanding of ecosystems.  The maximum score for the pre- and post-test is the same, 3 points x 8 categories = 24.  Analysis of pre- and post-course test scores using a Student’s t-test for independence, with separate variance estimates for pre-test and post-test groups, was conducted using Statistica v.10 (StatSoft, Tulsa, OK).  Analysis revealed a significant enhancement of students’ abilities to communicate their understanding of ecological concepts (t = -10.77, df = 364, p < 0.001) (Figure 3).  We also tested the scoring system on a small group of workshop participants at the New England Environmental Education Alliance conference (October 2014). Participants included members of their state’s respective environmental education association, plus  a mixture of grade school teachers and non-formal educators (with environmental education equivalent to or higher than that achieved by the post-course group of students).  The scores by these educators averaged 13 and ranged between 10 and 15.

Figure 3: Draw-an-Ecosystem Rubric Test Scores. Average test scores with SE (bars) for freshmen/transfer undergraduate students in first semester Environmental Science. Pre-test (n=297, mean=4.7) and post-test (n=60, mean=8.6).

 

Discussion

The draw-an-ecosystem test provides an open-ended but structure-bounded means to gauge a person’s understanding about ecosystems. We measured change between the first week of a semester-long environmental science course (four credits of lecture and lab) and the last week. The change showed an approximate doubling of scores. The drawings provide clues to where the students are for their starting points and provide a way to indicate possible misconceptions about science or the environment—misconceptions that may need to be cleared up for proper learning. Thus, the drawings can be a useful diagnostic tool for both the student and the teacher. They may also give insight into geographical, cultural, or social biases. For example, many ecosystem drawings were of ponds, not surprising given the water-rich environment of Maine.  None of the over 300 drawings were of desert ecosystems, yet such might be conceptually more common for people from an arid region such as the Southwest.  Another aspect of the sample ecosystem drawings is that they tend to be common rather than exotic, leading one to wonder whether we care for what we do not know, or if perhaps the opposite is true—a “familiarity breeds contempt” scenario in which the vernacular environment is seen as less important due to its commonality. A related question is whether or not the ecosystems selected for portrayal change as a result of education. Not only might students think more deeply about ecosystems, but perhaps they are more aware of and value the greater variety of them.

Another benefit of the ecosystem drawing is that it adds another dimension to the learning process. It provides a different way of assimilating and processing information, although according to our sample, artists tend to score about the same as those with fewer artistic skills, suggesting that perhaps a drawing assignment validates their supposedly lesser artistic abilities. Certainly, an exercise that incorporates multiple modes of representation, expression, and engagement—such as drawing and writing—fits better with a Universal Design for Learning (UDL) approach; these modes are the three principles of UDL (Burgstahler and Cory 2008; Rose et al. 2005).

In the future, we may seek a way to reduce the large number of categories in the scoring system, especially if the test is to be used with younger age groups. We should also attain a more comprehensive method of assessing inter-rater agreement for scoring the drawings. We may also explore use of the ecosystem drawings as discussion starters for peer evaluation and collaborative learning. Ecosystem concepts seem to be a powerful way of capturing and reflecting student thinking about environmental settings as dynamic systems.

Acknowledgements

Maine Mathematics and Science Teaching Excellence Collaborative (MMSTEC), an NSF-funded program, inspired the initial idea of this paper. Professors Jeff Beaudry, Sarah Darhower, Bob Kuech, Travis Wagner, and Karen Wilson provided insight.

About the Authors

Robert M. Sanford is Professor and Chair of Environmental Science and Policy at the University of Southern Maine. He is a SENCER Fellow and a co-director of SCI New England.

Joseph K. Staples teaches in the Department of Environmental Science and Policy at the University of Southern Maine. He was recently appointed a SENCER Fellow.

Sarah A. Snowman works at L.L. Bean and is a recent graduate of the University of Southern Maine, where she majored in Business and minored in Environmental Sustainability.

References

American Association for the Advancement of Science (AAAS). 1993. Benchmarks for Scientific Literacy. Oxford: Oxford University Press.

Banta, T.W., J.P. Lund, K.E. Black, and Frances W. Oblander, eds. 1996. Assessment in Practice. San Francisco: Jossey-Bass Publishers.

Bogner, F.X., and M. Wiseman. 2004. “Outdoor Ecology Education and Pupils’ Environmental Perception in Preservation and Utilization.” Science Education International 15 (1): 27–48.

Bowers, C.A. 1996. “The Cultural Dimensions of Ecological Literacy.” Journal of Environmental Education 27 (2): 5–11.

Burgstahler, S.E., and R.C. Cory. 2008. Universal Design in Higher Education: From Principles to Practice. Cambridge, MA: Harvard Education Press.

Environmental Literacy Council. Environmental Science Testbank. http://www.enviroliteracy.org/article.php/580.html (accessed November 30, 2016).

Halloun, I., and D. Hestenes. 1998. “Interpreting VASS Dimensions and Profiles for Physics Students.” Science and Education 7 (6): 553–577.

Hestenes, D., M. Wells, and G. Swackhamer. 1992. “Force Concept Inventory.” The Physics Teacher 30: 141–158.

Libarkin, J.C., and S.W. Anderson. 2005. “Assessment of Learning in Entry-Level Geoscience Courses: Results from the Geoscience Concept Inventory.” Journal of Geoscience Education 53: 394–201.

Lisowski, M., and J.F. Disinger. 1991. “The Effect of Field-Based Instruction on Student Understandings of Ecological Concepts.” The Journal of Environmental Education 23 (1): 19–23.

Nuhfer, E.B., and D. Knipp. 2006. “The Use of a Knowledge Survey as an Indicator of Student Learning in an Introductory Biology Course.” Life Science Education 5 (4): 313–314.

Robinson, M., and D. Crowther. 2001. “Environmental Science Literacy in Science Education, Biology & Chemistry Majors.”   The American Biology Teacher 63 (1):9–14.

Rose, D.H., A. Meyer, and C. Hitchcock, eds. 2005. The Universally Designed Classroom: Accessible Curriculum and Digital Technologies. Cambridge, MA: Harvard University Press.

Maine Mathematics and Science Teaching Excellence Collaborative (MMSTEC). http://mmstec.umemat.maine.edu/MMSTEC/

Sexton, J.M., M. Viney, N. Kellogg, and P. Kennedy. 2005. “Alternative Assessment Method to Evaluate Middle and High School Teachers’ Understanding of Ecosystems.” Poster presented at the international conference for the Association for Education of Teachers in Science, Colorado Springs, CO.

Wagner, T., and R. Sanford. 2010. Environmental Science: Active Learning Laboratories and Applied Problem Sets. 2nd ed. New York: Wiley & Sons.

Waldron, I., K. Peterman, and P. Allison. 2001. Science Survey for Evaluating Scientific Literacy at the University Level. University of Pennsylvania. (http://www.sas.upenn.edu/faculty/Teaching_Resources/home/sci_literacy_survey.html).

Walvoord, B.E., and V.J. Anderson. 1998. Effective Grading: A Tool for Learning and Assessment. San Francisco: Jossey-Bass Publishers.

Download (PDF, 716KB)

Geek Sneaks: Incorporating Science Education into the Moviegoing Experience

Dan Mushalko, WCBE 90.5
Johnny DiLoretto, Gateway Film Center
Katherine R. O’Brien, Ohio State University
Robert E. Pyatt, Nationwide Children’s Hospital and The Ohio State University

Abstract

There are many published examples of strategies for using movies in science education, ranging from individual activities within a class to complete courses like “The Biology of Jurassic Park” at Hood College or “The Physics of Film” at the University of Central Florida (Borgwald and Schreiner 1994; Dubeck et al. 1988; Dubeck et al. 1995; Firooznia 2006). However, all of these strategies employ the use of the film within a formal classroom setting. This paper describes a collaborative program connecting hands-on science activities and new release motion pictures for informal science education in the innovative setting of a movie theater.

Initial Development

The Gateway Film Center (GFC) is a not-for-profit theater which includes eight screens, an art gallery, an upper level bar/ lounge area, a large lobby, and a lower level nautical-themed restaurant.  In 2015, the theater was recognized by the Sundance Art House Project as an independent theater of excellence based on “high standards including: quality programming, deep involvement with their local communities, strong financial standing, and recognition from their peers and their communities”(Madden 2015).

The GFC initially began experimenting with science-related supplemental programming through discussions following showings of the film Gravity and the TV series Cosmos in 2013. Based on the success of those events and a love of science by the GFC staff, the theater was interested in broadening that concept to a wider range of new release films. Beginning in 2014, we formed a collaboration with the GFC to develop supplemental science programming related to and in support of films shown at the theater. The mission of the Gateway Film Center includes an educational component, but this traditionally had referred to cultivating film appreciation, movie criticism, and production skills.  However, they also promoted their facility as a “learning lab” to promote curiosity and the seeking of new knowledge. We felt that this inspiring philosophy could also apply to science education and the use of the theater as an informal learning environment.  This initiative was founded on the goals of (1) integrating science engagement into a unique part of popular culture, (2) exposing moviegoers to real scientists and real science questions, (3) facilitating learning in an informal environment.

During the 2014 summer blockbuster season, we spearheaded a series of panel discussions hosted by ourselves and other scientists from our immediate area in conjunction with three new films.  As one journalist noted in a piece to promote these events, “You can’t spell ‘science fiction’ without ‘science'” (Madden 2014). Discussions were held after the 7 p.m. show on consecutive Fridays during the month of May and included topics such as “The Monstrosity of Science in Film” for the movie Godzilla and “The Science of Mutation” for X-Men: Days of Future Past (Figure 1).  The series concluded with a discussion on the relative importance of scientific fact or narrative development in motion pictures.  All panel discussions were held in the upper level lounge area of the theater and announced at the end of the film screening to encourage people to stay afterwards and attend. Most seats in the lounge area were usually filled for each panel and attendees were typically adults. Discussions were lively and included both expert commentary and audience questions to allow individuals the opportunity to directly interact with scientists around topics they were familiar with (e.g., comic books, superheroes, and monsters). When possible, we also supplemented panels with interactive displays such as a collection of insects for “The Hero: Fact vs. Fiction” discussion for the film The Amazing Spiderman 2.

Science and the Geek Sneaks

While the panel discussion format had proven successful, we wanted to develop science programming that was more interactive, broadly appealing to younger audiences/ families, and would extend across a larger range of time/ movie show times.  We expanded the scope of our efforts and began developing science-related content for the Geek Sneak series at the GFC.  Geek Sneaks are advertised as “the ultimate geeking-out atmosphere: parties, unique pre-show entertainment (think behind the scenes and rare footage) and themed drink and dining specials, with a group that loves the movie as much as you do!” Geek Sneaks are held the Thursday before a film opens nationwide and consist of multiple showings of that movie during the evening hours. As promotion for the Geek Sneaks highlighted special pre-show entertainment, this seemed like an excellent environment in which to incorporate an informal science education component.

Science activities related to each film are designed to be of short duration (completed in roughly ten minutes or less) and suitable for small groups of people (the typical sizes commonly attending movies). All activities are designed to be hands-on and focused around science content related to themes in the associated film. The GFC hosts multiple Geek Sneak programs throughout the year, but only those movies with science-related premises were deemed suitable for related science activities. In addition to our work, the GFC also arranged other science guests for some Geek Sneaks to further develop the educational message and promotion around some films.

The GFC has eight screens, and Geek Sneak science activities were typically hosted in the lobby area, which allowed them to be accessible to all moviegoers and not just those attending the Geek Sneak.  For example, the Marvel Studios movie Ant-Man opened in June of 2015 and tells the story of a superhero who has the ability to shrink in scale thanks to a super suit created by his scientist mentor. As a superhero fantasy, there are many components of the story that lack scientific accuracy, such as the suit’s implausible ability to shrink a person to insect size, Ant-Man’s superhuman strength, and the ability of a human to go sub-atomic and survive in the quantum realm at the film’s conclusion. However with a plot and hero based at least in part on real science principles, we felt that this movie offered an excellent opportunity to couple some related science activities. Two such activities were set up in the theater lobby from 6 p.m. to 8 p.m. the evening of the Geek Sneak so that they were prominently visible to all theatergoers. The science activities for Ant-Man included one focused on air pressure as a mechanism to shrink or enlarge marshmallows using a hand pump or a vacuum chamber, as this most directly connects with the movie’s plot and the hero’s abilities (Figures 2 and 3). Each activity was accompanied by basic background information on the topic, which in this case included a brief definition of air pressure, a description of the composition of marshmallows, and a short discussion of how changing pressure makes them grow or shrink. Participants were also given markers and encouraged to create their own Ant-Man character with the marshmallow before experimentation. Additionally an entomologist and representatives from a local conservatory were also invited to present displays on ants and insects respectively.

For the film Jurassic World, we conducted DNA extractions from wheat germ so that moviegoers could take a sample of DNA they had processed themselves into the theater for the show, and a display of fossils was presented by the Ohio State University Orton Geological Museum including an impressive T-Rex skull. For the film Fantastic Four, science activities included light refraction experiments to mimic the powers of the Invisible Woman, and melting a small piece of the metal gallium (melting temperature 85.58°F) in the hand to mimic the heat of the Human Torch. For Star Wars: The Force Awakens, activities based around the Force focused on magnetism and static electricity (Figures 4 and 5). We have continued to develop film-related science activities with the GFC and have adopted a hybrid approach based on our experiences. For films with broader appeal that are more likely to pull in family audiences, we continue to develop hands-on, film-related science activities for Geek Sneaks associated with those movies. For the film X-Men Apocalypse we presented activities allowing theatergoers to search the human genome using a computer or test their own genetics of bitter taste [Figure 6]. For the film Star Trek Beyond, attendees could examine the warping of space or explore the International Space Station through a NASA computer simulation (Figure 7). Most recently, for the release of Shin Godzilla we showed the random nature of radioactive half-life using M&Ms and demonstrated the use of a Geiger counter with common household radioactive items.

For documentaries or other films aimed at more adult audiences, we have moved to hosting panel discussions in the theater’s restaurant area to continue conversations about film-related topics after the film has ended. For example, recent screenings of the documentaries The Last Man on the Moon and Science, Sex and the Ladies were followed by lively discussions on the future of manned flight and female sexuality. While documentaries typically do not have the same appeal as Hollywood blockbusters, we find many adult audience members are more interested in digging into the respective topics in greater detail through discussion sessions following the showings.

Audience Reactions and Challenges

Moviegoers have been generally positive towards this unusual science programming, and we frequently receive comments like “That’s really cool!” or “Why do you guys do this?” We see individuals coming to Geek Sneaks and checking in with us to see what new science activities we have planned for that film. For Batman v Superman: Dawn of Justice, we conducted “super” experiments to see how a person’s grip strength and total lung capacity would compare to Superman’s given some of the feats we’ve seen him demonstrate in movies. We also recorded both measures on a large board for all participants as a comparison across Geek Sneak attendees that evening. We found that not only did moviegoers enjoy these activities, but some came back repeatedly throughout the evening to check their scores compared to others. A few even asked to repeat the activities to try to improve their scores, allowing us to discuss ways they could do that long term.  We would also see one individual from a group complete the activities and then go and bring their friends over to try it as well. Most encouraging, however, is seeing groups who have completed the activities walk away discussing their results, which serves as further reinforcement of those concepts. We love watching informal science learning happening in a movie theater. 

Given that the reason people are at the GFC is to see a movie, we try to be respectful of their time as they interact with us.  We don’t want to make anyone late for a movie. If attendees decline to participate, we graciously thank them for looking and comment that we hope they enjoy their movie. When individuals do participate, we often will ask when their show time is and modify our presentation accordingly if their time is limited.  The popularity of a given movie directly relates to the number of attendees we will see for a Geek Sneak. For a film with reasonable popularity like Batman v Superman: Dawn of Justice, we saw forty people participating in at least one of the activities during the roughly two hours we were present for the Geek Sneak.

The participation of moviegoers was observed during the American premiere of Shin Godzilla. Two activities were run simultaneously for 45 minutes, and 34 moviegoers participated in at least one of the activities; most people did both. Participation was measured if an individual spent at least one minute on an activity. Gender (male; female) and age (child; teenager; adult) were recorded, as perceived by the observer, and each participant was also asked what movie they came to see as part of the demonstrators being cognizant of movie start times. Participation was scored by counting the unique ways moviegoers participated, including if the participant asked a question, answered a question, participated in the hands-on activity, watched the Geiger counter demonstration, helped another participant with the hands-on activity, or shared a story with the demonstrators. Participation scores ranged from a 1 (for someone who, for example, just watched an activity) to a 5 (for someone who, for example, actively participated). An example of a high participation score is the first female participant. She saw another movie but was interested in the activity because her mother is a statistician. While at the table, participant 1 asked and answered questions, shared her mother’s occupation, observed the Geiger counter and participated in the hands-on activity. The average level of participation for a participant was 2.5, indicating that they engaged in between two and three unique activity modalities. 

Most participants were adults (82%), possibly due to the lateness of the show, as well as the movie being in Japanese with English subtitles, which skews viewership based on reading comprehension levels. Furthermore, most participants were men (70%); however, this seemed representative of the gender skew of moviegoers who came for the Godzilla movie. Of the 10 women who participated, three (30%) women came to Gateway to view another movie, while of the 24 men only four (16%) came to see a movie other than Godzilla. There was no statistical difference between how much men and women participated, though they participated in different ways. Men were more likely to be the first to start the hands-on activity, ask a question, or share a story, while women were more likely to answer a question or help with the hands-on activity.

Conclusions

A recent report by a committee convened through the National Research Council described the venues of informal learning as occurring in the context of three areas: everyday (life) experiences such as personal hobbies, designed settings like museums, and after-school and adult programs (Bell et al. 2009). Studies by Falk et al. have shown that the public has a broad interest in science, and a 2007 survey identified the “lifelong predominantly free choice nature of science learning” as the primary method of science education (Falk et al. 2001; Falk et al. 2007). Based on their results, the authors then recommend “a more holistic approach to science education” which “integrates school, work, and leisure time learning experiences” (Falk et al. 2007, 464). While extensive research has focused on designed settings such as museums or planetariums and informal programs such as out-of-school clubs and citizen science projects, there is considerably less information about informal science education in everyday settings.   

A recent publication by Bultitude and Sardo described a new subclass of everyday settings they termed as “generic,” which included locations designed primarily for leisure activities, where participants have chosen to be, but for reasons unrelated to science or science learning (Bultitude and Sardo 2012). In their article, the authors describe three such everyday settings including a collective of science communicators called Guerilla Science presenting at a music festival, a physics demonstration set up at a garden festival, and a biological survey (Bioblitz) conducted at a large country park. Through interviews and structured observations, the authors found that attendees of these “generic” events valued “audience participation opportunities and hands-on nature of some activities.” The authors subsequently concluded that “holding activities within a relaxed but not habitual environment, where participants are at their leisure, offers clear advantages in reaching non-standard audiences”(Bultitude and Sardo 2012, 32). Our experiences using the innovative setting of a movie theater as one such “generic” everyday setting for informal science education would confirm this. While we have only anecdotal responses from participants, we have observed that hands-on activities and discussions in the theater stoked curiosity and promoted science learning in theatergoers. Especially following panel discussions, we observed that participants seemed to connect to a movie’s science content in more personal ways. Finally, these science activities and discussions were excellent material for the Gateway Film Center to use in advertising and promotions which solidified the collaborative nature of this program.

At a recent Geek Sneak during the  summer of 2016, we were approached by an attendee who was excited to talk to us. He had attended a previous Geek Sneak for X-Men Apocalypse and had participated in the activity around bitter taste genetics and the TAS2R38 gene. He excitedly told us that since that film he’d read a couple of articles which mentioned the TAS2R38 gene; he had remembered the gene from our activity and had gone to look up additional information on it himself. While it is only a single piece of anecdotal evidence, this is exactly the impact we are aiming for.

About the Authors

Dan Mushalko is General Manager, Operations and Program Director at the National Public Radio affiliate 90.5 WCBE, a division of the Columbus City Schools District. He is also the host of “The Amazing Science Emporium,” which mixes music, puns, and other offbeat elements to teach science. Mr. Mushalko holds several journalism and education awards, including the American Association for the Advancement of Science’s Science Journalism Award. He focuses his avocational activities on education, teaching writing at Thurber House (a non-profit literary center) and conducting in-school science demonstrations. 

Johnny DiLoretto is a longtime Columbus media personality and performer. Johnny graduated from The Ohio State University with a Bachelor of Arts degree in English and Film Studies in 1997 and began his career in print in 1998 as a film critic for The Other Paper. He transitioned to television in 2002 when he became the entertainment reporter, film and food critic for WSYX ABC 6 and WTTE Fox 28.  From 2012 to 2016, he was the director of communications at the Gateway Film Center, an independent, non-profit movie theater dedicated to the art of cinema and its transformational and educational potential.

Katherine R. O’Brien is a contractor with the Center for Life Science Education at the Ohio State University. She received her M.A. from Clark University and her Ph.D. from the University of Pennsylvania.    Dr. O’Brien supports increasing diversity in STEM by developing connections between universities, the arts, museums, and the communities they serve. 

Robert E. Pyatt is an Associate Director of the Cytogenetics and Molecular Genetics Laboratories at Nationwide Children’s Hospital and an Associate Professor-Clinical in the Department of Pathology at The Ohio State University. He received his M.S. from Purdue University and his Ph.D. from The Ohio State University.  Dr Pyatt is passionate about science education, especially developing new avenues of informal delivery. 

References

Bell, P.B., B. Lewenstein, A.W. Shouse, and M.A. Feder. 2009. Learning Science in Informal Environments: People, Places, and Pursuits. Washington, DC: National Academies Press.

Borgwald, J.M., and S. Schreiner. 1994. “Science and the Movies: The Good, the Bad, and the Ugly: A Novel Interdisciplinary Course for Teaching Science to Nonscience Majors.” Journal of College Science Teaching 23 (6): 367–371. 

Bultitude K., and A.M. Sardo. 2012. “Leisure and Pleasure: Science Events in Unusual Places.” International Journal of Science Education 34: 2775–2795. 

Dubeck, L.W., S.E. Moshier, and J.E. Boss. 1988. “Science in Cinema: Teaching Science Fact through Science Fiction Films.” New York: Teachers College Press.

Dubeck, L.W., S.E. Moshier, and J.E. Boss. 1995. “Using Science Fiction Films to Teach Science at the College Level.” Journal of College Science Teaching 25 (1): 46–50.

Falk, J.H., P. Brooks, and R. Amin. 2001. Free Choice Science Education: How We Learn Outside of School. New York: Teachers College Press.

Falk, J.H., M. Storksdieck, and L.D. Dirrking. 2007 “Investigating Public Science Interest and Understanding: Evidence for the Importance of Free-Choice Learning.” Public Understanding of Science 16: 455–469.    

Firooznia, F. 2006. “Giant Ants and Walking Plants: Using Science Fiction to Teach a Writing Intensive, Lab-Based Biology Class for Nonmajors.” Journal of College Science Teaching 35 (5): 26–31.

Gateway Film Center. n.d. “Education.”  http://gatewayfilmcenter.org/films-cool/ (accessed December 17, 2016).

Gateway Film Center. n.d. “Geek Sneaks.” http://gatewayfilmcenter.org/featured_film_series/geek-sneaks/ (accessed December 17, 2016).

Madden, H. 2014. “Discuss Science and Superheroes at Gateway Film Center.” http://www.columbusunderground.com/discuss-science-and-superheroes-at-gateway-film-center-hm1 (accessed December 17, 2016).

Madden, H. 2015. “Gateway Film Center Wins Sundance Honor.” http://www.columbusunderground.com/gateway-film-center-hm1 (accessed December 17, 2016).

Download (PDF, 2.51MB)

A Research Project in Inorganic Chemistry on the Flint Water Crisis

Stephen G. Prilliman, Oklahoma City University

Abstract

Students in an introductory inorganic chemistry course conducted a semester-long literature-based research project on the then-ongoing drinking water crisis in Flint, Michigan, USA. Students presented their findings at a poster session that was open to the public. The implications of choosing an ongoing news story as a focus and the ability for such a project to shape the curriculum in a broad introductory course is discussed.

Introduction

If organic chemistry is the study of carbon, inorganic chemistry is the study of all the other elements on the periodic table. The breadth of possible topics in an undergraduate introductory inorganic chemistry course can thus present a challenge for the instructor. In fact, the topics actually taught in inorganic chemistry vary substantially from one institution to another (Raker et al. 2015). At Oklahoma City University, Inorganic Chemistry is a one-semester, lecture-only course for upper-level chemistry and biochemistry majors. The course covers orbitals, periodic trends, bonding, symmetry, transition metal complexes, acid-base chemistry, redox chemistry, and solid state chemistry.

The addition of a research project with societal implications to this course came about because of the demise of another course. For several years students in our college were required to take a senior seminar in which they would investigate and write policy proposals for problems facing humanity in the 21st century, e.g., pollution or climate change. The course proved difficult to staff, and departments were instead asked to offer upper-level courses with a strong research component. However, this research project, initially an “add-on,” became central to the course experience.

A number of factors made the Flint crisis a good choice for an inorganic chemistry research project, including

  • A sense of immediacy due to the ongoing nature of the crisis
  • Strong curricular overlap
  • Availability of information from journalistic sources
  • Availability of independent data from the Flint Water Study (2016)
  • Strong social justice aspect
  • A story impacting a diverse urban area not unlike our own

Several other recent chemistry-related events were considered, including the explosion at a fertilizer plant in West, Texas (Chemical Safety Board 2015) and the Gold King Mine contaminated water release impacting the Navajo reservation (Environmental Protection Agency 2015), but neither had all of the advantages listed above. Local cases were also considered. The abandoned Tar Creek mine in far northwest Oklahoma (Barringer 2004) lacked the timeliness of Flint, while the recent earthquakes in Oklahoma stemming from wastewater injection at well sites required knowledge deemed to be beyond the scope of the course.

Overview of the Flint Water Crisis

In 2012, the city of Flint began investigating cheaper alternatives to its water purchasing agreement with Detroit. At the time, Flint was under the administration of a state-appointed emergency manager due to ongoing fiscal difficulties. Flint officials decided to join a regional effort to construct a treatment plant on Lake Huron by 2016 with an anticipated savings of $200 million over 25 years (Kennedy 2016). In the interim, the city would  treat its own water from the Flint River beginning in April, 2014. Residents quickly complained of yellow and brown water. The city had trouble regulating, alternately, E. coli bacteria and chlorination by-products. Corrosion found on newly made parts prompted the General Motors engine plant in Flint to discontinue use of city water in October 2014. In January 2015, the first elevated lead levels in drinking water were found. Michigan state officials dismissed independent results showing elevated lead levels until October 2015, when residents were told to stop using Flint city water for drinking, cooking, or bathing. A more thorough overview of the crisis can be found elsewhere (Flint Water Advisory Task Force 2016; Kennedy 2016; Wisely and Erb 2015).

Mechanics of the Project

Students in the inorganic chemistry course were assigned to research and present a poster on some aspect of the Flint water crisis. Learning objectives for the project are listed in Table 1. Posters were chosen as the final research product so that students could present their research in a forum that encouraged community engagement and discussion. A poster session would also give students an authentic experience in explaining their findings to both scientists and non-scientists who might be in attendance.

In the second week of the semester the students read a newspaper article (Wisely and Erb 2015) and a trade journal article (Torrice 2016) in class. Students were given two additional days in class for research and consultation but were mostly expected to complete their research on their own. Halfway through the semester students were required to turn in a summary of their research up to that point.

Results

Students’ topics fell into two broad categories that we referred to as “people” and “pipes.” Most students in the “people” group focused on the mechanism of lead toxicity. Two students examined biological pathways in which lead ions displace calcium ions. Another looked at using the common ligand molecule EDTA as a treatment for acute lead exposure. Those focusing on “pipes” looked at the chlorination byproducts acting as oxidizing agents that converted lead metal to soluble lead ions. Several others focused on whether treating water with phosphates might have prevented pipe corrosion by creating and maintaining a solid layer of iron/lead phosphate on the interior of city and residential pipes.

Each of the thirteen students in the class presented a poster at the end-of-semester poster session (Figure 1). In addition to students, faculty, and staff who attended, a reporter from the local independent weekly newspaper, the Oklahoma Gazette, also attended, resulting in an article in her newspaper (Estes, 2016) and providing students an authentic experience in explaining science to the public.

Discussion

There were two unplanned benefits of this project. First, many of the students addressed the social justice aspect of the crisis. While students had been instructed to be sensitive to the fact that real people were affected, many decided that it was important to discuss the injustice of the situation. One student’s poster prominently displayed a quote by Mayor Dayne Walling declaring the Flint River “good, pure drinking water, and it’s right in our backyard.” Another student expressed to the Oklahoma Gazette reporter her incredulousness upon realizing that city and state officials “were really letting this happen to people.”

Another unplanned benefit was how the project motivated study and reinforced course material. Student research projects discussed redox chemistry, electrochemistry, chelation, and periodicity. This made it easier to motivate students to study these subjects and gave the course a sense of coherence. In this way, the project, which was originally an addition, became a focal point for the entire course. As one student put it, “Once we found the water reports and the results had shown a high chlorine residue, I felt like the chemistry became real for me.”

We missed one opportunity when we failed to reach out to Oklahoma City community members with specialized knowledge in water treatment and water quality to add a local dimension to the project. Although the students showed a remarkable capacity to empathize with the citizens of Flint, a local connection would have added greater relevancy to their research. Providing students a rubric for the poster at the beginning of the semester and additional checkpoints throughout the semester would have ensured that expectations were better understood. A formal method of assessing students’ perception of learning during the project (rather than an assessment for the entire course) should have been established also.

Conclusion

The project, which focused on a current news topic and culminated in a public poster session, presented students with a unique opportunity to experience the need for expert analysis on an ongoing news event. The chemistry was neither simple to understand nor to explain. Students needed to integrate their scientific knowledge with information gleaned from news reports to explain the salient chemistry to both scientists and non-scientists. Students were thus provided with an experience that lies outside the norm of most undergraduate programs and which might not have been possible with a more traditional case study or research project.

Acknowledgements

Thank you to the students of the course for their hard work on their projects and to Rod Jones of the Oklahoma City University Communications and Marketing Department, for inviting the reporter to cover the poster session. Thanks also to Traci Floreani and Joe Meinhart for their work on the original “21st Century Problems” course.

About the Author

Stephen Prilliman, Ph.D., is an associate professor and department chairperson of Chemistry at Oklahoma City University. For the past ten years Stephen has taught both high school and college courses using the POGIL (Process-Oriented Guided Inquiry Learning) method of teaching and is an active participant in the POGIL Project. His research is focused on the development and assessment of inquiry-based activities and labs that address persistent misconceptions.

References

Barringer, F. 2004. “Despite Cleanup at Mine, Dust and Fear Linger.” http://www.nytimes.com/2004/04/12/us/despite-cleanup-at-mine-dust-and-fear-linger.html (accessed December 20, 2016).

Chemical Safety Board. 2015. “West Fertilizer Explosion and Fire.” http://www.csb.gov/west-fertilizer-explosion-and-fire-/ (accessed December 20, 2016).

Environmental Protection Agency. 2015. “Emergency Response to August 2015 Release from Gold King Mine.” https://www.epa.gov/goldkingmine (accessed December 20, 2016).

Estes, L. 2016. “Oklahoma City University Students Research Facets of Water Crisis.” Oklahoma Gazette, May 5, 2016, 4−5.

Flint Water Advisory Task Force. 2016. “Final Report.” http://www.michigan.gov/documents/snyder/FWATF_FINAL_REPORT_21March2016_517805_7.pdf (accessed December 20, 2016).

Flint Water Study. 2016. “Updates.” http://flintwaterstudy.org (accessed December 20, 2016).

Kennedy, M. 2016. “Lead-Laced Water In Flint: A Step-By-Step Look At The Makings Of A Crisis.” http://www.npr.org/sections/thetwo-way/2016/04/20/465545378/lead-laced-water-in-flint-a-step-by-step-look-at-the-makings-of-a-crisis (accessed December 20, 2016).

Raker, J.R., B.A. Reisner, S.R. Smith, J.L. Stewart, J.L. Crane,  L.Pesterfield, and S.G. Sobel. 2015. “Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty.” Journal of Chemical Education 92: 973–979.

Torrice, M. 2016. “How Lead Ended Up in Flint’s Tap Water.” Chemical and Engineering News 94 (7): 26–29.

Wisely, J., and R. Erb. 2015. “Chemical Testing Could Have Predicted Flint’s Water Crisis.” Detroit Free Press, October 11, 2015. http://www.freep.com/story/news/local/michigan/2015/10/10/missed-opportunities-flint-water-crisis/73688428/ (accessed December 20, 2016).

Download (PDF, 580KB)

Winter 2017: From the Editors

We are pleased to announce the Winter 2017 issue of Science Education and Civic Engagement: An International Journal. This issue provides a variety of articles that describe successful strategies for engaging students.

L. Jay Deiner (New York City College of Technology, City University of New York), Gregory Galford (Chatham University), and Nancy Trun (Duquesne University) describe an innovative strategy to assist students to understand complex, multidisciplinary community issues. A partnership between students studying chemistry and those studying interior architecture created a mutually beneficial learning environment in which all students could approach a brownfield redevelopment project from multiple perspectives.

Steve Cohen and Melanie Pivarski (Roosevelt University) partnered with Barbara Gonzáles-Arévalo (Hofstra University) to examine how the integration of projects into a Calculus II course impacted students who were designing the projects and those who were serving as embedded tutors. The authors evaluated the project using surveys, interviews, and classroom observations. Based on these data, they conclude that tutors reported greater confidence in the knowledge and teaching of calculus, whereas project designers gained educational benefits that were similar to those obtained from an undergraduate research experience.

Dan Mushalko (National Public Radio), Johnny DiLoretto (a performer), and Robert E. Pyatt (Nationwide Children’s Hospital and Ohio State University) created a program for informal science education that invites moviegoers to participate in hands-on science activities prior to seeing a newly released film at a not-for-profit movie theater. Their approach has been successful at providing engaging enjoyable science experiences in an unexpected setting.

The water crisis in Flint, Michigan, was widely publicized in the news media. Stephen G. Prilliman (Oklahoma City University) used this incident as the foundation for his upper-level inorganic chemistry course. Students performed literature-based research projects that examined topics ranging from the aqueous chemistry of lead to therapies for treating lead poisoning. The instructor noted that the project was particularly effective at enabling students to make connections among various inorganic chemistry topics, while also prompting them to appreciate the connection between chemistry and an important civic issue.

What type of assessment strategies can be used to gain insight into students’ understanding of a complex scientific concept like an ecosystem? Rob Sanford (University of Maine) has developed an assessment tool that asks students to draw an ecosystem and score the results using a rubric. Comparing students’ ecosystem drawings at the beginning and end of the semester revealed a statistically significant improvement in their understanding of ecosystems processes and interactions.

We wish to thank all the authors for sharing their insightful work with the readers of this journal.

Trace Jordan and Eliza Reilly, Co-Editors-in-Chief

Access individual articles here:
Read and download the full issue:

 

[PDF]

 

The following photographs were used under the Creative Commons license: Roosevelt University (Ken Lund), Gowanus Canal (Allison Meier), Flint, MI (USDA/Lance Cheung), and Cloud Pond (lawepw). The photograph for the Geek Sneaks article is courtesy of Robert Pyatt.

Students as Partners in Curricular Design: Creation of Student-Generated Calculus Projects

 

Steve Cohen, Roosevelt University
Melanie Pivarski, Roosevelt University
Barbara Gonzalez-Arevalo, Hofstra University

Abstract

In recent years advanced undergraduate students have developed projects for our redesigned Calculus II classes. Our student designers create new mathematics projects and present their work at conferences and in local talks. They are often mathematically early in their college careers, and so we can involve students of all levels in research projects.

Our course redesign affected three groups of students: those taking the class, those designing projects for the course, and embedded tutors. This qualitative study examines how the second and third groups of students benefited from their experiences and how we can modify our program to improve it. Evidence was gathered from interviews, surveys, and observation of student research work and its implementation in the classroom. Tutors reported more confidence in their knowledge of calculus and insights into teaching it, and project designers experienced benefits similar to that of a traditional undergraduate research experience.

Introduction

The extensive use of undergraduate research in mathematics is fairly recent, dating back to the 1980s with the widespread introduction of the NSF-funded Research Experience for Undergraduates programs (Lopatto 2010). Most of these experiences are designed for advanced undergraduates who are in their junior or senior years, and they are often used to help prepare these students for graduate study. By using undergraduate students to develop projects for use in a Calculus II classroom, we can give freshmen and sophomores the opportunity to work on research. The purpose of their research is clear; our students are motivated by helping their peers learn. Developing the calculus projects as well as using them to teach calculus helps to contextualize the mathematics curriculum, which is seen as “a promising direction for accelerating the progress of academically underprepared college students” (Perin 2011).

The use of undergraduates as embedded peer tutors is common; see e.g. Evans et al. (2001) and Goff and Lahme (2003). Tutors attend most classes, and depending on the instructor, sometimes work with students during the class sessions. Tutors can connect more deeply with the material, increasing their calculus skills as well as their ability to communicate and collaborate effectively.

In order to avoid ambiguity, we use “embedded tutors” or simply “tutors” to refer to the embedded peer tutors and “project designers” or “student researchers” to refer to students who, after completing Calculus II themselves, worked on researching a project for use in a future Calculus II course. We refer to students who were currently taking the course simply as calculus students.

In the section Connecting Students to the Course, we briefly describe our Calculus II course and the overall role of the tutors and project designers. As this varied by semester, we elaborate with more details and context in the Experiences and Results section. In the section Curricular Design as Student Research, we discuss definitions of student research that occur in the literature and how these connect to our curricular design. In the Methodology section we describe the methodology used in our study. In the Experiences and Results section, we delve into the results of the study, providing and elaborating on themes found in the student responses. In the Conclusions section, we summarize our results with a list of best practices.

Connecting Students to the Course

At Roosevelt University, semester-long projects with a civic engagement component became a regular part of all sections of Calculus II in Spring 2010 (González-Arévalo and Pivarski 2013). Calculus projects help students explore STEM applications, acquire library research skills, and develop communication skills. Beginning in Fall 2010 each class was assigned an embedded undergraduate tutor who attended class at least once a week and helped students in and out of class. Starting in Summer 2011, undergraduate research students had the opportunity to work on designing materials for class projects. Their work involved picking a topic of civic importance, finding appropriate data sources, considering issues related to calculus, and linking these together. There are many possible outcomes for these projects: use in a Calculus II class, honors theses, research talks, and starter ideas for more advanced mathematical research. We consider all of these to be successful outcomes. We also had some unsuccessful outcomes where students failed to progress.

This course redesign originally developed as a result of our involvement with the Science Education for New Civic Engagements and Responsibilities (SENCER) project. Over the years, our continued involvement with SENCER helped us incorporate students as partners in our curricular design. At the end of 2013 we published a project report (González-Arévalo and Pivarski 2013) detailing the redesign of the course and what we then thought would be the benefits. The current paper provides a qualitative assessment of the newest components of this redesign, namely calculus project development by advanced undergraduate research students and the incorporation of embedded tutors. We provide a description of how we use the embedded tutors in class, as well as how students work on the design of calculus projects. Some of this is explained in our aforementioned project report but we have included it here also for the convenience of the reader.

Embedded Tutors

Each semester at Roosevelt University there are one or two Calculus II sections, each with between nine and thirty students. Because there are only one or two calculus tutors per semester, we do not have a formal tutor training process. Each section instructor informally trains their own tutor. Typically, an experienced instructor acts as a secondary faculty resource. The designers do not work directly with the tutors, except in the cases where an individual student acts in both roles. In that instance, the tutor has a deep knowledge of the goals of the calculus project; we elaborate on this in the section Theme A: Insight into better learning processes. We intend for tutors to

  • attend all classes,
  • hold regular office hours,
  • test out the computer labs ahead of time, and
  • work with groups both inside and outside of class.

In practice, we often are unable to find qualified students whose schedule allows them to attend all class meetings, and so we loosen the requirement to attendance at least once per week. Tutors are not needed as graders, as the homework is online. Instructors grade weekly quizzes by hand to gauge where the class is mathematically. Instructors also grade the project parts. Tutors are student workers paid hourly; their salary is part of the institutional budget, often including Federal Work Study.

The use of the tutor varies by instructor. Some embedded tutors help students when they are working on problems during class, but others merely observe the class. When they are made available, some tutors try the class’s computer assignments ahead of time. The tutors always help out during class periods involving computer use.

Project Designers

At Roosevelt University many students transfer in or take calculus their sophomore year, which means they are not ready for a traditional undergraduate research experience until their senior year. Therefore, students need to have research opportunities requiring less background knowledge. Project creation allows student researchers to choose an area for the calculus application.

In the initial course redesign process, research students compiled a literature review on calculus projects. This review and previous semesters’ calculus projects provide a foundation for our project designers. Although they are mathematically constrained to construct a modeling project for a calculus class, designers independently explore an application of their own choosing. We ask that it involve actual data and ideally a social justice component. As they develop their plans, we meet weekly with the research students to discuss their ideas, progress, and challenges. During the week, they work independently, although we are always available either in person or by e-mail. At Roosevelt, students are funded through an NSF STEP grant (Science, Technology, Engineering, and Mathematics Talent Expansion Program) shared with the sciences, and through our university’s honors program.  At a school without funding, project design can act as an independent study project. 

Some students had their own ideas for projects, and others modified existing projects. For example, one student found a project that involved studying population growth through a series of biology experiments. She wanted the project to be compelling to the many science majors taking the class. The original project involved studying population growth in simple life forms and in humans. Since growing cell cultures involved more lab time than was realistic for a calculus class, she arranged to use some existing yeast data from one of our biologists’ research labs. She investigated curve fitting with MAPLE, split the problem into discrete assignments, and structured the investigation to fit the topic schedule of the calculus course. We helped her with this process over the summer and made adjustments during the semester that we used her project.

Design typically happened over the summer, but it sometimes occurred during the semester.  At any given time there are at most two students working on design.  Although they had access to them, the designers did not formally review past projects, and they did not have formal discussions with tutors.  They instead drew informally from their own experiences and anecdotes from their friends.  The designers whose projects were used in courses saw the results of the students’ work through a STEM poster session.

Curricular Design as Student Research

The work that our students do creating calculus projects is a distinctive research experience that has much in common with a traditional undergraduate research experience. In the report “Mathematics Research by Undergraduates: Costs and Benefits to Faculty and the Institution” (MAA CUPM 2006), the Committee on the Undergraduate Program in Mathematics of the Mathematical Association of America lists four characteristics of undergraduate mathematics research:

  • The student is engaged in original work in pure or applied mathematics.
  • The student understands and works on a problem of current research interest.
  • The activity simulates publishable mathematical work even if the outcome is not publishable.
  • The topic addressed is significantly beyond the standard undergraduate curriculum.

Although these guidelines were originally designed to describe a traditional mathematics research project, they apply in many ways to the work that our research students do. Our research students create projects for use in a Calculus II classroom, and so theirs is more of an applied curricular design research project than a traditional mathematics research project. Because of this, the first item is only partly true; the work is often adapted for a Calculus II classroom from another source. The second item holds, and it was a significant motivator for our research students when they chose the topic of their project. The third holds in the sense that their work, when completed, is made public through use in our classrooms. This is similar to an applied project being used by a company. For our students, two of six projects reached this point. Others either lacked time or good data sets or transitioned from a Calculus II project into applied math research for an honors thesis. The final point applies in the sense that it takes them outside the traditional curriculum. While the mathematics might be found in an undergraduate math modeling course, the act of designing mathematics activities that relate to a social justice theme provides a deeper challenge. At the same time, this allows our student project designers the chance to work on research very early in their undergraduate studies.

Dietz (2013, 839) defines three levels of student research activities:

Guided discovery: In these classroom activities, students make step-by-step progress toward a standard (but unknown to them) mathematical formula, or other result, via open-ended, but guided questions.

Independent investigation: In these multi-day activities, the instructor asks open-ended questions that require independent exploration by the students. Results may not be surprising to professionals, but they cannot be easily found in the literature.

Scholarly inquiry: In these intense activities, students engage in scholarly work that is typical of a given field of inquiry.

Our research students engage in curriculum design, researching applied areas and educational theories in order to develop a guided discovery project for the Calculus II class. The process of creating a new calculus project is an independent investigation; for one of the students it moved beyond this into the area of scholarly inquiry where she analyzed the efficacy of her project. For another, her work extended beyond that of a typical Calculus II project and became scholarly inquiry in the area of actuarial science.

There are multiple layers of learning, where advanced students progress beyond Calculus II while helping students currently taking Calculus II. When surveying the literature, we have found a few instances where advanced students created mathematics materials for introductory students. In Duah and Croft (2012), four mathematics students worked with lecturers to create materials for a module in vector spaces and complex variables. The authors noted the call for student-led curricular design in the UK (Kay et al. 2007; Porter 2008), which other fields have responded to. The authors also noted that there was a paucity of literature on student-created mathematics curricula. At least two papers were written in response to Duah and Croft (2012). In Hernandez-Martinez (2013), two students at an English university worked to create mathematical modeling teaching and assessment tasks for a second-year mathematics for engineers course. In Swinburne University of Technology in Australia (Loch and Lamborn 2015), a team of engineering and multimedia students created videos for engineering students to demonstrate how mathematics is used in engineering. In Pinter-Lucke (1993), the program of Academic Excellence Workshops (AEW) at Cal Poly Pomona involved STEM upperclassmen as leaders of cooperative learning-based workshops for underclassmen in courses ranging from college algebra through calculus. Student facilitators selected materials and led weekly problem sessions. The facilitators met weekly with faculty who were teaching the course, and they went to an intensive two-day training session. Although the paper does not mention whether the problems are student-created or student-selected, the process of choosing appropriate course materials is an advanced one, and so this is a notable example of students contributing to the enhancement of mathematics curricula.

Some institutions involved with the SENCER project are also working with students to create curricular materials, notably in biology (Goldey et al. 2012), where students are used to create and update labs. At Guilford College students are creating a new course as a part of their independent study,  and at New England College a proposal is being piloted.  At the United States Military Academy students are doing in-depth assessment research of the university’s curricular design across the STEM disciplines (United States Military Academy 2014).

In many of these cases, a small number of students were selected to participate in this work, but without a particular common experience to draw upon. In our project we bring students into the experience systematically and intentionally, which leads to the following multi-level learning experience: students have the initial experience of working on a Calculus II project as students in the class, then are given the opportunity to work as a peer tutor or project designer (or both). Their subsequent work then impacts the next set of potential tutors and designers. The depth and detail of the work done by our project designers appears to go beyond that of the AEW leaders, and so the combination of multi-level learning with the depth of experience appears to be unique to our endeavor.

Methodology

In this qualitative study, which received IRB approval, we interviewed each student with several open-ended questions (Appendix A) to get them to reflect on how they were affected by the experience.

We created a survey after we interviewed a few of the students, and it included questions that were based on the interviews. The survey itself was anonymous, and it was used to corroborate the interviews. This qualitative study involves a relatively small number of potential subjects: six project designers, one of whom was also a tutor, and eight additional students who were embedded tutors. Eight students, four of whom were project designers, agreed to be interviewed; four of these also completed a follow up survey. Two individuals, including one project designer, completed the survey, but not an interview. Four did not respond to our contact request. Due to the small sample size it was not possible to conduct a quantitative study of these results, and we have therefore avoided all numerical data throughout the paper (since it would not be statistically valid). Instead, we present the results of the qualitative study of the interviews. The survey was only used to triangulate the results of the interviews.

To categorize the responses, the three authors independently reviewed the interview transcripts and labeled responses according to a variety of categories (Appendix B). The labels were compared and discussed until consensus was reached. The results are organized into three main themes as follows:

Theme A: Insight into better learning processes.

Theme B: Insight into applying mathematics/calculus.

Theme C: Feedback on improving the experience of embedded tutors and researchers.

Experiences and Results

In the first part of this section we will describe some of our observations made as course instructors and research advisors. In the second part of the section we will concentrate on the actual results of our interviews.

Experiences

Overall, our experiences have been positive. While some of our embedded tutors merely benefited from a review of calculus, others developed into expert teachers. All students surveyed confirmed that they gained in some way in varying amounts.

At the beginning, we hoped that the use of tutors would contribute to a sense of community among the students in the class and in our major. We also hoped that the class’s mathematical skill level would increase along with the tutor’s mathematical skills. We hoped for smoother computer labs, smoother group dynamics during the project, and a source of peer advice. Two of the tutors explicitly commented on the increased sense of community; we observed this as well, both in the classroom and among the tutors. Due to the small number of class sections observed it was difficult to discern whether embedded tutors consistently improved the mathematical skill level of the class and to assess their group dynamics. But tutors had a noticeable effect on the computer labs; these benefited greatly from the extra support. The amount of peer advice given varied by tutor; some of them commented on this in the interviews. Students in sections where the embedded tutors helped during the class period appeared to be more likely to work with the tutors outside of class.

There has not been a good mechanism for class feedback on the tutors; an online survey had a low response rate, but informally they praised tutors who were actively involved.

Our experiences with student researchers have also been mixed. They have definitely learned the difficulty of finding data, since much of what is found online is processed data that give only means, medians, and standard deviations rather than raw data. They found that government sites are usually a good data source. As a result of their work, we used two student-created projects in our course; these are on modeling population and modeling air pollution. Those student researchers gave talks on their projects, both internally and externally. Two students developed more involved research projects on actuarial and head injury models that were not used in class because they were too advanced for a Calculus II class but which resulted in internal and external talks. Two projects (population, actuarial modeling) developed into honors theses, with the first thesis also studying the impact of the population project on the class using it. Two projects were not finished. One of the student researchers, working on temperatures, was stalled in the data collection stage, and did not relate the topic to calculus. The other, working on planetary motion, had planned activities but lost the plans in a move. After this, we started making students type up their results part-way through their research project to prevent the loss of work.

In our experience, project designers have the best results when they fill out weekly timesheets rather than being paid in a lump sum for their summer research. Timesheets appear to help with their pacing and accountability. In a situation where a designer is working in an independent study, the structure of the independent study course can be used to aid in pacing.

Results

The student interviews indicate that the students benefited from their experience as tutors and designers as well as from working on the Calculus II projects. They also provide valuable feedback on the curricular design. Note that we have removed words such as “Uh, um, like” as well as repeated phrases from the transcription quotes without explicitly labeling each occurrence.

Theme A: Insight into Better Learning Processes

This theme encompasses the students’ sense of themselves as learners and tutors, how math instruction is enhanced by students working on open-ended problems, and the components of effective project design. All of the tutors and designers report gains in their understanding of calculus and in becoming better students themselves. All appreciate the value of a required Calculus II project.

Tutors and designers put considerable thought into what students need to be successful. All of the tutors helped with the technology. One noted that they wanted students to see that the computer is doing something you can do by hand but just much faster. Tutors noted the value of learning to work in teams and that talking about a project is a good way to communicate to outside people what you learned in the class. Tutors noted the value of sitting through the class a second time. They were able to work on their problem areas and to look for connections among the topics and applications. Having experienced the challenge of working on a project that is more open-ended than a typical homework problem, they are in a position to coach students through the process. One tutor spoke at length about the psychology of a student facing a difficult subject. Knowing that their tutor struggled with calculus when they first took the class can reduce the student’s own stress and self-doubt.

Project designers tried to include elements that connected naturally to particular calculus concepts. For example, population growth naturally associates with differential equations. But more importantly they tried to make the project connect to students’ own majors such as biology. The project designers discussed how they had to think about what calculus topics students needed to know and how the project could help them with difficult concepts. One project designer explained that conceptually, integration is difficult for students, and so he wanted the project to connect integration to a real life problem. They are interested in making the topics current such as using calculus to study greenhouse gasses. By putting more emphasis on a meaningful situation, students would naturally move away from a more mechanical view of calculus.

Several tutors viewed the project as motivating interest in math. Previously their math classes involved memorization and refinement of processes. As embedded tutors they appreciated a mathematically relevant context. One said, “I think that it was really interesting getting to do lots of different things, but I also think that it is something that students talk about especially within the same degree program. So if we did something that was more biological, population based… one semester when I had a classmate who did something that was more ecological, like the oil spill one, we could have those conversations about how we’re applying the same skills in a very sort of different context.”

It is evident that tutors and creators think a lot about the students. They care about whether the project is feasible and relevant to student interests. The majority of the students in Calculus II are science majors, so project designers looked for projects that related to biology and chemistry, as we do not offer a physics major at our institution. Typically, projects are related to an important social issue (e.g. climate change and overpopulation). Several tutors expressed empathy for the students and were motivated to help students practice, find related problems in the homework, and discover new ways to explain things.

Tutors took advantage of their unique relationship with the students. Tutors know what the students are hearing from the instructor; they can fill in gaps from the instructor to the students and can also give some of the students’ perspective back to the instructor. This advocacy for the students helps the instructor better understand the needs of the students. The tutor’s view is different from the instructor’s; their recent mastery of the material helps them to understand the students’ thought processes. Students often felt more comfortable talking to a peer.

One tutor had designed the project that was being used that semester.  This experience was especially fruitful, as they had thought very deeply about what they wanted to include in the project, how students learn, and where they were lacking in skills. They reported that this greatly increased their effectiveness as a tutor for the course; this self-reporting is consistent with our observation.

Theme B: Insight into Applying Mathematics/Calculus

Our main motivation for incorporating projects in Calculus II is to give all students the ability to talk about calculus and its uses. The project challenges students to think about the mathematical concepts in a contextualized situation that requires imagination and technological assistance. Our tutors and designers reflected about their time as calculus students, both here and elsewhere, in their interviews. Calculus II students must communicate among themselves about mathematical modeling in order to successfully complete the project. Many cited this communication as crucial.

One described group work in their previous calculus class at a different school: “It was never actually going out into the world and presenting your findings and being knowledgeable of what you were talking about, so I liked that as a component.” One said their experience as a Calculus II student here helped them talk to professionals at a job fair.

The project designers’ reflections deepened when discussing the thinking that went into designing a project. Project designers looked for ideas that were feasible for Calculus II students to complete in a semester. Designers wanted their projects to be socially relevant and therefore searched for an interesting area and then had to deconstruct it; one chose to study head injuries and came across the head injury index. That led to a new kind of analysis for her, working backwards from a formula to work out its derivation. The designers intended for students to experience how a model may be limited, but they still wanted students to make valid inferences about what formulas would be reasonable to try. One designer noted his own growth as a student through understanding why concepts are true rather than simply accepting them as an established principle.

The project designers applied knowledge acquired since having had Calculus II. One, an actuarial science major, designed a project using mortality tables. Reflecting on the project done and the project design led to the problem of data. The projects needed some publicly available data to analyze. They could see that the data used when doing the project as a Calculus II student had problems. Most of the designers expressed awareness of the difficulty of doing a project with real data, in particular, finding a good source and dealing with flaws in the data themselves.

There is consensus among the designers that the project brings value to the class. It gives insight into how calculus can be applied in the real world, and the learning that is needed to navigate the project provides an incentive for students to learn more about calculus itself.

Theme C: Feedback on Improving the Experience of Embedded Tutors and Researchers

Tutors and researchers gave feedback on how to run the different activities. The tutors felt strongly that more preparation and better coordination between instructors and tutors was needed. They gave suggestions about the structure of the class and insights on the value they should bring to it. Tellingly, the project designers did not express concerns about what was expected of them. Their biggest concern regarded the difficulties of finding good projects, particularly those with usable data sets. Because the designers met regularly with their research mentor, they remained informed of the goals and expectations of the project.

Most tutors saw the value and importance of integrating technology into the class, but most did not feel that their skill level improved while tutoring. Many pointed out the need for more training for students, tutors, and instructors. The tutors believe that students in the class need more formal instruction on using the software, noting that much class time is spent troubleshooting the difficulties students are having or getting them started. The tutors felt that more training for them would improve their effectiveness, as they were unable to answer some questions students had. Finally, there are indications that the instructors also need additional training, both on the software being used and on the way to utilize the tutors effectively. In some cases the instructor relied on the tutor to troubleshoot any problems arising with the software. Most tutors felt instructors only explicitly engaged them when technology was being used in that day’s class. In fact, many of the tutors were not active during class unless there was an activity involving computers.

It is not surprising then that communication was the most cited concern among tutors. Several of them said they wished they knew more about the instructor’s goals. The true value of the embedded tutor is to act as a partner of the instructor, and for this he/she needs to be aware of what the instructor is trying to accomplish. Some tutors tended to hold back and not be proactive about helping, in part because they had no direction and in part because of their own inexperience and lack of training.

Many noted the value of having the time structured so that tutors are available to students both in and outside of class. Opportunities to be active in the class were important to the tutors, though some needed more prompting from the instructor. This suggests that some changes in the structure would help facilitate the tutor’s activities. Possibilities include more training involving all members of the team, regular meetings between tutor and instructor where plans for the class are discussed, and a set of prompts for the instructor to help guide the tutor.

Conclusions

Our experiences with student researchers mirrored those of others, even though our student research had a curricular focus instead of a mathematical one. In Seymour et al. (2004), a survey of seventy-six student science researchers at four different liberal arts institutions was compared with literature from fifty-four different papers on hypothesized benefits of being a student researcher.

They found that students reported gains in many areas, including confidence in their ability to do research, finding connections between and within science, their organizational and computer skills, their enthusiasm, enhanced resumes, and their attitudes towards learning and working as a researcher. In our study, we also found these gains, giving evidence that this type of student research project has many of the benefits of a traditional research project.

The main advantage of research with a curricular focus is the possibility for students to work when they are just beyond the calculus level. In our study, designers and tutors gained a deeper knowledge of how to apply mathematics and use technology. Both reflected on what makes a good teacher, indicating this type of experience could greatly benefit undergraduates who are interested in teaching. They also provided thoughtful comments on how to improve the program, most notably the need for consistent communication between tutors and instructors.

4.1 Best Practices for Incorporating Students in Curricular Design

Given the extensive amount of research on embedded tutors, we will concentrate primarily on best practices for student researchers.

  • Meet student researchers and tutors at least weekly.
  • Be available for tech support, orienting all students to new software.
  • Pay students using timesheets rather than lump sums.
  • Encourage researchers to become embedded tutors for the course (both before and after creating a project).
  • Have a set of background literature, including previously used projects, available for new student researchers.
  • Don’t be too prescriptive. Let them brainstorm ideas and act as a sounding board for them.
  • Have at least two students working at the same time; they can give feedback to each other, and bounce ideas off each other.
  • Communicate your expectations to help them steadily progress.
  • Use file sharing (Dropbox, iCloud, etc.) to prevent the loss of student work.
  • Proofread and give feedback on projects and talks. Be supportive and encouraging.
  • Make students aware of speaking opportunities (with enough time to write an abstract, to plan a trip, etc.).
  • Provide internal venues where they can present their work.
  • If the topic gets too deep for calculus allow it to become a more traditional research project.

Recommendations for Further Study

We would love to see a quantitative study on our style of design process. For this, a large university or community college would have to undertake these activities in Calculus II or a similar course. We are also interested in more studies on the impact of doing research early on in college. In our specific work, it would be interesting to increase interactions between the embedded tutors and the project designers.  It would also be interesting to have new project designers formally review old projects.  This would structure their introduction to the design process and help them to think critically about issues involved in the design.  Similarly, when possible, one could have the tutors formally review the current semester’s project in the week prior to the semester as a form of tutor training.

Acknowledgements

We would like to thank Amy Dexter, Bethany Hipple, Sherri Berkowitz, and Amanda Fisher for giving us pointers on the qualitative research process. We would like to thank the SENCER project for the initial impetus to redesign our Calculus II course. Thank you to the reviewers for helpful feedback. Thank you to the NSF STEP grant and the honors program for supporting the student researchers financially, and to the Provost’s office for providing support for some travel and a student worker. Thank you to Janet Campos for her work transcribing the interviews.

About the Authors

Steve Cohen is an associate professor of mathematics at Roosevelt University. He teaches courses to both majors and non-majors throughout the curriculum with particular interest in the History of Mathematics and Abstract Algebra. He is a member of the steering committee of the Chicago Symposium on Excellence in Teaching Undergraduate Mathematics and Science. He earned an M.S. and a Ph.D. in Mathematics from the University of Illinois Chicago and served as a visiting assistant professor at Loyola University of Chicago. Steve likes to play undisclosed games of uncertain outcomes. He also bakes an excellent cheesecake whose outcome is much more certain.

Bárbara González-Arévalo is an associate professor of mathematics at Hofstra University and a SENCER Leadership Fellow. Previously she was an associate professor of mathematics, statistics, and actuarial science at Roosevelt University. Her current research interests include Statistics, Applied Probability and the Scholarship of Teaching and Learning Mathematics. She earned an M.S. and a Ph.D. in statistics from Cornell University, and worked as an assistant professor at the University of Louisiana at Lafayette. She enjoys baking and has two beautiful boys. It is important to note that she does not bake the boys.

Melanie Pivarski is an associate professor of mathematics at Roosevelt University and a SENCER Leadership Fellow. She is currently serving as the department chair for mathematics and actuarial science. She earned a Ph.D. in mathematics from Cornell University and worked as a visiting professor at Texas A&M University.  Her current research interests involve heat kernels and their applications in metric measure spaces. Recently, she has been inspired to include students in her research work. This led her to work in the scholarship of teaching and learning mathematics. She likes to eat her co-authors’ creations, as she is too busy chasing her toddler to bake on her own.

References

Dietz, J. 2013. “Creating a Culture of Inquiry in Mathematics Programs.” PRIMUS 23 (9): 837–859.

Duah, F., and T. Croft. 2012. “Students as Partners in Mathematics Course Design.” In CETL-MSOR Conference Proceedings 2011, D. Waller, ed. 49–55. York, UK: The Maths, Stats & OR Network.

Evans, W., J. Flower, and D. Holton. 2001. “Peer Tutoring in First-Year Undergraduate Mathematics.” International Journal of Mathematical Education in Science and Technology 32 (2): 161–173.

Goff, G., and B. Lahme. 2003. “Benefits of a Comprehensive Undergraduate Teaching Assistant Program.” PRIMUS 13 (1): 75–84.

Goldey, E., C. Abercrombie, T. Ivy, D. Kusher, J. Moeller, D. Rayner, C. Smith, and N. Spivey. 2012. “Biological Inquiry: A New Course and Assessment Plan in Response to the Call to Transform Undergraduate Biology.” CBE Life Sci Educ 2012 11 (4): 353–363. doi:10.1187/cbe.11-02-0017.

González-Arévalo, B., and M. Pivarski. 2013. “The Real-World Connection: Incorporating Semester-Long Projects into Calculus II.” Science Education and Civic Engagement: An International Journal (Winter 2013). http://seceij.net/seceij/winter13/real_world_conn.html (accessed December 19, 2016).

Handelsman, J., C. Pfund, S.M. Lauffer, and C.M. Pribbenow. 2005. “Entering Mentoring.” The Wisconsin Program for Scientific Teaching. http://www.hhmi.org/sites/default/files/Educational Materials/Lab Management/entering_mentoring.pdf (accessed December 19, 2016).

Hernandez-Martinez, P. 2013. “Teaching Mathematics to Engineers: Modelling, Collaborative Learning, Engagement and Accountability in a Third Space.” Mathematics Education and Contemporary Theory 2 Conference (MECT2), June 2013. http://www.esri.mmu.ac.uk/mect2/papers_13/hernandez.pdf (accessed December 19, 2016).

Kay, J., P.M. Marshall, and T. Norton. 2007. “Enhancing the Student Experience.” London: 1994 Group of Universities. http://old.1994group.ac.uk/documents/public/SEPolicyReport.pdf (accessed December 16, 2016).

Loch, B., and J. Lamborn. 2015. “How to Make Mathematics Relevant to First-Year Engineering Students: Perceptions of Students on Student-Produced Resources.” International Journal of Mathematical Education in Science and Technology 47: 29–44.

Lopatto, D. 2010. “Science in Solution: The Impact of Undergraduate Research on Student Learning.” Tuscon, AZ: The Research Corporation.

MAA CUMP (Mathematical Association of America Committee on the Undergraduate Program in Mathematics). 2006. “Mathematics Research by Undergraduates: Costs and Benefits to Faculty and the Institution.” http://www.maa.org/sites/default/files/pdf/CUPM/CUPM-UG-research.pdf (accessed December 16, 2016).

Perin, D. 2011. “Facilitating Student Learning through Contextualization.” Community College Research Center Working Paper No. 29, Teachers College, Columbia University. http://ccrc.tc.columbia.edu/media/k2/attachments/facilitating-learning-contextualization-working-paper.pdf (accessed December 16, 2016).

Pinter-Lucke, C. 1993. “Academic Excellence Workshops.” PRIMUS 3 (4): 389–400.

Porter, A. 2008. “The Importance of the Learner Voice.” The Brookes eJournal of Learning and Teaching 2 (3). http://bejlt.brookes.ac.uk/paper/the_importance_of_the_learner_voice-2/ (accessed December 16, 2016).

Seymour, E., A. Hunter, S. Laursen, and T. DeAntoni. 2004. “Establishing the Benefits of Research Experiences for Undergraduates in the Sciences: First Findings from a Three-Year Study.” Science Education 88 (4): 493–534.

United States Military Academy. Core Interdisciplinary Team. “Interdisciplinary Learning, Assessment, Accreditation, and SENCER Courses: How Do They All Fit Together?” Presentation at the SENCER Summer Institute, Asheville, NC, July 31–August 4, 2014.

Download (PDF, 644KB)

 

Interdisciplinary Course Collaborations in Community-Based Learning

Gregory Galford, Chatham University
Nancy Trun, Duquesne University
L. Jay Deiner, NYC College of Technology

Abstract

Teaching undergraduate science courses through the lens of local community issues has the potential to help students connect more strongly to the sciences and to the communities near the university. In considering the construction of such courses, it is clear that even community issues that have strong science cores—water quality, viral and bacterial disease vectors—are inherently multidisciplinary, with scientific and technological considerations in balance with the economic and social factors that inform public policy. The fundamental challenge is, then, to develop ways to teach complex and multidisciplinary community issues within the context of science courses. Here, we report on a pilot study of a course structure designed to address this challenge.  Cohorts of students from different disciplines were paired, and a strategy was developed that required the students to work together to teach one another about a community issue from their discipline’s perspective. This model was applied to cohorts of chemistry and interior architecture students studying local brownfield redevelopment efforts.

Introduction

Context of the Project

Application-based service learning (ABSL, www.ABSLnews.net) is a recently developed pedagogy that infuses laboratory science courses with five of the high-impact educational strategies endorsed by the Association of American Colleges and Universities: learning communities, writing intensive courses, collaborative assignments and projects, undergraduate research, and service-learning (Kuh 2008). A unique aspect of ABSL is that the undergraduate research and service-learning activities are both linked to a shared local community issue (Wei and Woodin 2011). Thus, a strength of this teaching method is that it shows students the application of science to community problems.  As a result, it provides the opportunity to teach community awareness and engagement in the science disciplines, where such perspectives are not traditionally emphasized (Dostilio et al. 2013).  The National Science Foundation (NSF) funded initial development of ABSL (CCLI Grant #0717685) and subsequent expansion and refinement of the pedagogy (TUES Phase II Grant #1226175).  As part of the effort to expand ABSL, a team consisting of a chemistry professor at the NYC College of Technology of the City University of New York (City Tech, CUNY) and an interior architecture professor at Chatham University (Pittsburgh, PA) began creation of ABSL versions of chemistry laboratory courses and partnered interior architecture courses, both focused on the issue of brownfield redevelopment.

A brownfield is “a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant” (United States Environmental Protection Agency 2015). As brownfield redevelopment is at the nexus of environmental chemistry, architecture, economics, politics, and social justice, development of an ABSL chemistry course focused on brownfield redevelopment should include perspectives from non-science disciplines.  This made the choice of partnering with the Green and Sustainable Design course from the Interior Architecture program at Chatham a logical one.  On the other hand, the Chatham Interior Architecture program’s interest in teaching students about brownfields derives from its long-standing focus on sustainability. This program has won awards from the American Society of Interior Designers for its work in sustainability education, and Chatham has made sustainability a university-wide educational focus.

While the utility of interdisciplinary collaboration in ABSL course development is clear, a critical question must be answered: What strategies can be used to foster meaningful interdisciplinary collaborations when science and non-science courses partner to study a community issue?

Results and Discussion

Interdisciplinary Collaborations Through a Shared Slide Presentation Project

At the beginning of the spring 2015 semester, a General Chemistry II laboratory course and a Green and Sustainable Design course were chosen as paired cohorts to develop and enact strategies for interdisciplinary collaboration in community-based teaching.  Wherever possible, the core concepts of both courses would be taught through the lens of understanding a shared brownfield redevelopment site, the Gowanus neighborhood in Brooklyn.  Chemistry students would perform in-class water quality laboratory experiments and out-of-class community service relating to the canal.  Design students would use the canal as a case study.  For the chemistry students, an in-class lecture and discussion about brownfields would provide an initial introduction to the issue.  Then the class would take a walking tour of the canal, seeing brownfield development in action as sites previously occupied by chemical processing and heavy industry are transformed into residential neighborhoods and retail spaces.  For the architecture students, brownfield issues would be introduced through an overview of environmentalism, then through specific investigations into environmental history.  Students would also study seminal texts related to sustainability and building, tour local “green” buildings, and view presentations on green building certification programs.

To provide a chemistry perspective to the design students, and a design perspective to the chemistry students, the paired cohorts would co-produce a narrated slide presentation about sustainable development in the Gowanus neighborhood. For the chemistry students, this co-produced slide presentation relates to the learning outcome that students be able to communicate about science in written, oral, and visual forms to a range of different audiences.  For the interior architecture students, the slide presentation connects to the learning outcome that students demonstrate an understanding of the concepts, principles, and theories of sustainability as they pertain to the built environment and its inhabitants. The presentation gives students an opportunity to construct a product that illustrates this gained knowledge.

Because the cohorts were located in different cities, met at different times, and followed semester schedules that included only seven overlapping weeks, the students’ co-production was structured so that it could be achieved through virtual interactions. Figure 1 shows how the Spring 2015 cycle of slide presentation production, feedback, and response formed the basis of a second round of slide presentation production, feedback, and response to be performed by the next semester’s cohorts of General Chemistry II and Green and Sustainable Design (Fall 2015).

Thus, through time, paired cohorts of different disciplines worked together to create increasingly refined versions of the slide presentation. Even though this model of presentation production, peer response, and feedback was developed for courses running in the same semester, the cyclical nature of the interactions means that even cohorts operating during different semesters could engage in such a collaboration model. The current presentation draft is uploaded to the ABSL website (Trun 2015).

We note that the structure of using feedback from one cohort’s presentation to inform the next cohort’s work was critical to pairing courses at Chatham and NYC College of Technology because the universities have such different semester schedules.  Chatham begins the spring semester in early January and ends by the third week in April while NYC College of Technology begins the spring semester at the end of January, recesses for two weeks in April, and then ends the spring semester in late May. However, for universities with more compatible schedules, it would be useful to test a different interaction model, one that would ensure that students receive and act upon feedback from their partner discipline before the end of the course.

Structuring the First Round of Student Slide Presentation Production

For the first round of presentation production in Spring 2015, the instructor of Green and Sustainable Design introduced students to the issue of the Gowanus neighborhood redevelopment and discussed the nature of the peer-to-peer collaboration with the chemistry students. The instructor used principles of problem-based learning (PBL) to facilitate the design students’ structuring of their first presentation draft (Duch et al. 2001). In accord with PBL, the instructor stated the problem (creating an informational slide presentation), provided access to relevant information, and acted as a facilitator for the student-driven conversations. Using categories of goals, ideas, information, and learning needs, students identified the content and organized the structure of the presentation. Using the structure they devised, students determined their own learning outcomes, established individual and team responsibilities, and defined areas where they needed to expand their knowledge. The students spent a total of two weeks planning and creating the presentation and providing feedback to one another. For the design students, this strategy mimics the project management skills they will use in their professional careers.

Details of Student Interactions to Refine Presentation

The Spring 2015 design students produced the first draft of the slide presentation approximately one week before the chemistry students were to begin water sample collection for their in-class research. The chemistry students watched the slide presentation at home, prior to the sample collection field trip. As an ungraded assignment, the chemistry students provided written feedback about the slide presentation to the design students. In the feedback, chemistry students answered the following prompts:

Describe three things you learned from this video.

  • What subject(s) presented in the video was (were) most interesting to you?
  • If you were making a video about Gowanus Canal development, what aspect(s) do you think needs (need) additional investigation?
  • Do you have any additional comments for the student videographers at Chatham University?

The chemistry students were surprisingly engaged in this feedback exercise. Despite that fact that watching the presentation and providing feedback were ungraded activities, eighteen out of twenty-one students provided feedback. All students who provided feedback gave detailed responses, most in the range of 120 to 205 words.

In their feedback, many of the chemistry students reported learning about or becoming interested in the land use concept of zoning, the design concepts of reverse engineering, and Leadership in Energy and Environmental Design (LEED) building practices. Students further reported learning about and becoming interested in specific buildings that are part of the Gowanus neighborhood redevelopment. Finally, students reported becoming particularly interested in the technologies of remediation and sustainable engineering such as combined heat and power systems. While all of the above-described concepts, from brownfields to zoning to environmental remediation, would require entire courses to cover in detail, the slide presentation provided an initial exposure for the chemistry students.

In addition to reporting that they had gained exposure to ideas of neighborhood development and sustainable design, the chemistry students commented on aspects of development that they had not previously understood. For example, students commented that they had learned about the level of detail that goes into planning a building. Another student commented that while he or she was familiar with the concept of reverse engineering in the field of computer science, it was a surprise to find that the same concept could be applicable to environmental issues.

After the chemistry students completed their feedback forms, names were redacted, and the forms were sent to the design students. By the time chemistry students had completed the feedback forms, the design students’ semester had ended, so the design students received the feedback forms via email. In the email, the design students were asked to review the forms and provide written responses in consideration of the chemistry students’ feedback and in consideration of the experience of making a slide presentation for a partner class. The design students were asked to respond to six prompts, including

  • What responses were most similar to what you anticipated?
  • What responses did you find most unexpected?

Despite receiving the chemistry students’ feedback after the completion of the course, six out of the nine design students provided written feedback. Responses to the above prompts provided insight into the way design students view the learning style and knowledge background of science students. For example, some of the Green and Sustainable Design students said they expected that the science students would report being interested in the factual aspects of design (LEED, brownfields, and sustainable design technologies), but were surprised that chemistry students requested more information about the types and origins of pollution in the Gowanus neighborhood. In essence, the design students had expected that chemistry students would already have a full chemical understanding of the canal, even though such an understanding would require quite extensive and advanced laboratory work. In addition, the design students expressed surprise that the chemistry students commented on the design aspects of the presentation in particular, suggesting more visuals and less text in future versions of the presentation. Providing design students with insights into scientists’ knowledge and communication styles was an unexpected outcome of the peer-to-peer collaboration activity, and it may be helpful as designers and environmental scientists frequently work together during a building project.

Conclusions and Path Forward

Incorporation of peer-to-peer interdisciplinary activities into an ABSL course provided a means to expose students to a complex community issue from a different perspective. A serial collaboration between separate cohorts of chemistry and design students was developed, but other disciplinary pairings are also possible, as are other work structures like simultaneous virtual or in-person collaboration or mixed discipline teams. Students’ level of engagement in the peer-to-peer activities, as evidenced by their willingness to participate in ungraded exercises, was high.  It is hypothesized that two factors contribute to the observed student engagement: the increased ownership students feel when participating in projects they have structured through problem-based learning; and the greater authenticity of generating work to be used by peers as opposed to work that is simply viewed by an instructor. These hypotheses will be investigated through continued use of interdisciplinary peer-to-peer learning projects in future ABSL courses.

Aknowledgements

The authors gratefully acknowledge support of this work by the National Science Foundation (TUES Phase II Grant #1226175).  L.J.D. thanks the NYC College of Technology for additional support of the chemistry course through the CHLCARE initiative.

About the Authors

Gregory Galford is an assistant professor of interior architecture at Chatham University in Pittsburgh, PA.  He is currently a doctoral student at the University of Missouri.  His master’s degree is from the Architectural Association in London.  His research focuses on alternative forms of housing.

Nancy Trun is an associate professor of biology at Duquesne University in Pittsburgh, PA. Nancy earned her Ph.D. in molecular biology from Princeton University. She is currently working on the microbiology of passive bioremediation systems for abandoned coal mine drainage using the application-based service learning pedagogy.

L. Jay Deiner is an associate professor of chemistry at the NYC College of Technology of the City University of New York.  Jay earned his Ph.D. in chemistry from Harvard University.  His research focuses on electrocatalytic materials and on chemistry laboratory pedagogy.

References

Dostilio, L.D., N. Conti, R. Kronk, Y.L. Weideman, S.K. Woodley, and N. Trun. 2013. “Civic Learning through Public Scholarship: Coherence among Diverse Disciplines.” Journal of Public Scholarship in Higher Education 3: 43–65.

Duch, B.J., S.E. Groh, and D.E. Allen, eds. 2001. The Power of Problem-Based Learning. Sterling, VA: Stylus Publishing.

Kuh, G.D. 2008. High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. Washington, D.C.: Association of American Colleges and Universities.

Trun, N. 2015. ABSL Cross-Discipline Collaboration: Architecture & Chemistry. http://www.abslnews.net/greg-galford.html (accessed November 24, 2016).

United States Environmental Protection Agency. 2015. Brownfield Overview and Definition. http://www.epa.gov/brownfields/brownfield-overview-and-definition (accessed November 24, 2016).

Wei, C.A., and T. Woodin. 2011. “Undergraduate Research Experiences in Biology: Alternatives to the Apprenticeship Model.” CBE-Life Sciences Education 10: 123–131.

Download (PDF, 731KB)

Winter 2016: From the Editors

The Winter 2016 issue of Science Education and Civic Engagement: An International Journal is the first published by the National Center for Science and Civic Engagement through its new institutional affiliation with Stony Brook University. [more]We are pleased by the range and diversity of the civic issues addressed by articles, and in particular, by the strong representation of interdisciplinary and trans-departmental collaborations, including several that integrate content from STEM disciplines with material drawn from the humanities and visual arts.

The connection and relevance of science to the fine arts, and of both to our civic and social well-being, to is foregrounded in two project reports. “The Link between Science and the Humanities” by Paula Bobrowski and Ann Knipschild, of Auburn University, describes an innovative course where students learn and conduct research on music and the science behind its effects on the human body and brain—effects with important therapeutic implications for physical and emotional ailments. Physicist Antonino Cosentino reports on the low-cost technology and investigative methods he has developed for students of archaeology, art history and art conservation in “Scientific Examination of Cultural Heritage Raises Awareness in Local Communities.” Cosentino argues that the preservation and conservation of cultural heritage material is a matter of increasing civic importance, particularly in communities where public resources are scarce, Addressing this challenge will demand multi-disciplinary competence in science, technology, history, and art, as well as the creative application of low-cost and accessible technology.

Debby R. Walser-Kuntz and Cassandra Bryce Iroz have integrated visual literacy goals into a multi-disciplinary and experiential learning course on public health by incorporating curatorial and exhibit design strategies. Following a period of community-based work with public-health providers, students partnered with a professional curator and developed a public exhibition, undertaking many tasks required of museum professionals, including brainstorming, identifying key themes and audiences, designing visual presentation strategies, and refining the core content.

Sally Wasileski, Karin Peterson, Leah Green Mathews, Amy Joy Lanou, David Clarke, Ellen Bailey and Jason Wingert from the University of North Carolina-Asheville argue for the significant gains that interdisciplinary collaborations around important civic questions can offer both students and faculty in “Why We Should Not ‘Go It Alone’: Strategies for Realizing Interdisciplinarity in SENCER Curricula.” Reporting on a coordinated curriculum design initiative on the theme of “Food for Thought,” which shared learning outcomes across multiple courses and departments, the Asheville team reviews the challenges, methods, and findings of this ambitious project.

Habiba Boumlik, Reem Jaafar, and Ian Alberts chose the interdisciplinary implications of STEM learning itself as their pressing civic question in “Women in STEM: A Civic Issue with an Interdisciplinary Approach.” They describe a trans-departmental collaboration (Mathematics, Natural Sciences, and Liberal Arts) in a community college that used the question of women’s lack of representation in STEM fields as the basis of a course that advanced quantitative literacy, expository writing, and research skills, while increasing student awareness of this important issue.

Environmental issues, and climate change in particular, continue to generate creative curricular responses that reveal the power of students to contribute to public knowledge. “Storm Impacts Research: Using SENCER-Modeled Courses to Address Policy,” by Michelle Ritchie and James F. Tait details how the coastal impact of hurricane Irene and Superstorm Sandy offered a unique opportunity for organizing undergraduate research. Students from “Science and the Connecticut Coast” (a 2007 SENCER model) joined with students from other courses that teach environmental science “through” issues of civic consequence. Their combined research on coastal vulnerability and produced policy recommendations to increase the state’s coastal resilience in the face of future storms.

Alison Olcott Marshall and Kelsey Bitting at the University of Kansas describe their revision of an existing paleontology course for non-majors, which covered 3.5 billion years of earth’s history, by relating the content to complex, controversial and current issues of immediate concern to students. “Teaching Through Human-Driven Extinctions and Climate Change: Adding Civic Engagement to an Introductory Geology Course for Non-Majors” contextualized the pre-historic geologic record, including extinctions, by showing interweaving it with, and showing its relevance to, the understanding of contemporary climate change and the looming prospect of new human-caused mass extinctions.

As we face yet another unanticipated epidemic in the Zika virus, Abour H. Cherif, Jasper M. Bondoc, Ryan Patwell, Matthew Bruder and Farahnaz Movahedzadeh developed a learning activity that helps students understand epidemics and the immensely complex and unsolved scientific and policy challenges they present to human life and society on a global scale. “The Use of Untested Drugs to Treat the Ebola Virus Epidemic: A Learning Activity to Engage Learners” describes a course that included basic biology and epidemiology content, library research, literature review, and collaborative group work. Students were charged with developing an informed and well-supported position, which they debated with peers, on the use of untested drugs on infected patients during a global health crisis.

We hope you will find this collection of reports from the field informative, and as confirmation of the enduring and generative educational experiences that result from teaching science through real and relevant issues of significance for us all.

Trace Jordan and Eliza Reilly, Co-Editors-in-Chief

Access individual articles here:
Read and download the full issue:

 

 

Download (PDF, 6.15MB)

The photographs for articles by Drs. Bobrowski, Knipschild, Cosentino, Walser-Kuntz, Bryce Iroz, Tait, and Ms. Ritchie were provided by the authors. The photos for articles by Dr. Cherif et al, Dr. Wasileski et al, and Dr. Jaafar et al are from iStockphoto. The extinction line photograph is by Michael Himbeault and used under the Creative Commons license.

Incorporating Photo-Book of Concepts in Physics and Environmental Chemistry Courses

Nasrin Mirsaleh-Kohan,
Texas Woman’s University
Cynthia Maguire,
Texas Woman’s University

Abstract

Much has been written about the importance of helping students gain critical thinking and analytical reasoning skills that are transferable beyond classroom situations (Association of American Colleges and Universities 2007; Kuh 2008). Student engagement correlates positively to these skills as well (Carini et al. 2006). To this end, the photo-book activity was designed to allow students opportunities to connect real-world applications with course concepts. By analyzing the relationship of the subject matter to the real world, students reinforce their understanding and application of ideas learned in class. In the photo-book project, students were asked to capture class concepts in pictures. This assignment encouraged students to be more observant and to search for examples in their world and further allowed them to freely express their interpretation of the subject and reflect on their learning. This project was embedded in various classes (as recommended by Pithers and Soden 2000) such as physics, environmental chemistry, and climate change, and also in community projects such as Earth Week. In this paper we discuss the details of the photo-book concept, offer examples of students’ comments, and finally, present an overview of this learning model.

Introduction

Critical thinking and analytical reasoning, problem-solving skills, and the ability to understand varying perspectives on issues are among the traits valued by employers in evaluating job applicants. As knowledge is expanding so quickly, students cannot possibly master content knowledge; the key is to learn habits of mind that will enable them to continue learning beyond their formal academic training. Experiential learning activities can help students integrate and apply skills and knowledge in real-world settings and situations, and thus accelerate their success (Association of American Colleges and Universities 2007; Kuh 2008; Texas Woman’s University 2013). Furthermore, student engagement is positively linked to learning outcomes such as critical thinking and grades (Carini et al. 2006). Extensive research also suggests that students need to“think well,” and activities should be embedded in courses to encourage critical thinking (Pithers and Soden 2000 and references therein).

Texas Woman’s University (TWU) founders recognized the importance of this and adopted the University motto, “We learn to do by doing.” Stemming from a quote by Comenius (considered the father of modern education) and recommended by Helen Stoddard, one of TWU’s first Regents, the motto captures the unique focus of a TWU education so well that it was engraved on the University’s first building (Bridges 2001, 7).

At TWU, experiential learning may include internships, service learning projects, civic engagement, scholarship, or creative activities. Creative activities include projects that provide students with real-life, hands-on experiences. Engaging students in creative activity reinforces academic knowledge and establishes a foundation for academic growth. Student experiences may extend beyond the classroom. The photo-book project described in this paper is one such creative activity. Universities are increasingly incorporating such opportunities into the curriculum and institutional offerings (Karukstis 2010; Lopatto 2010; Malachowski and Dwyer 2011; Sheardy 2010; Sloane 2010). Thiry et al. (2011) note, “Undergraduate science education should be augmented by student engagement in high quality,‘real world’ experiences that meet students’ broad range of interests, talents, and career goals. Well-designed experiences supplement classroom learn- ing in many ways…” (384). Asking students to contextualize what they are learning in class should be expected to inspire motivation (Fisher 2016). Understanding how our students are motivated and finding practical strategies can improve the quality of learning in our courses (Ambrose et al. 2010). Eyler (2009) suggests the benefits include“a deeper understanding of subject matter than is possible through classroom study alone; the capacity for critical thinking and application of knowledge in complex or ambiguous situations” (26). Such activities provide a means to both enhance student engagement and to better prepare students for success after graduation.

TWU’s Quality Enhancement Plan (QEP), Pioneering Pathways: Learn by Doing, is a five-year plan mandated by our accrediting agency. It is designed to enhance student learning through student engagement in experiential learning.

The intention of this project is expressed in the words of Benjamin Franklin, “Tell me and I forget, Teach me and I remember, Involve me and I will learn.” Learning by doing and applying theory to practice is considered crucial for student success in an ever-changing, increasingly connected, and global world. The related QEP Student Learning Outcome (SLO) for our photo-book activity is for students to effectively connect classroom theories to real-world experiences through practical application of knowledge. In this paper we discuss three QEP-designated courses and how this SLO was addressed using the photo-book of concepts in each course.

Beginning in the summer of 2007, faculty at TWU engaged with the SENCER community of practitioners to improve science education. SENCER focuses on real-world problems and, by so doing, extends the impact of this learning across the curriculum to the broader community and society. Faculty develop expertise in teaching “to” basic, canonical science and mathematics “through” complex, capacious, often unsolved problems of civic consequence. Using materials, assessment instruments, and research developed through SENCER, faculty members design curricular projects that connect science learning to real-world challenges (Middlecamp 2011; Sheardy 2010; Sheardy and Burns 2012). The SENCER understanding of learning acknowledges a debt to the philosopher William James, who wrote in his Talks to Teachers (1899):

Any object not interesting in itself may become interesting through becoming associated with an object in which an interest already exists. The two associated objects grow, as it were, together: the interesting portion sheds its quality over the whole; and thus things not interesting in their own right borrow an interest which becomes as real and as strong as that of any natively interesting thing. The odd circumstance is that the borrowing does not impoverish the source, the objects taken together being more interesting, perhaps, than the originally interesting portion was by itself.

More contemporaneously, SENCER’s work is informed by the National Academies’ commissioned reports on learning, notably How People Learn and Knowing What Students Know: The Science and Design of Educational Assessment (Bransford et al. 2000; Pellegrino et al. 2001). SENCER Ideals have been applied to develop field-tested courses for many disciplines on a broad range of topics. Among those ideals, “SENCER conceives the intellectual project as practical and engaged from the start, as opposed to science education models that view the mind as a kind of storage shed where abstract knowledge may be secreted for vague potential uses.” Students and faculty report that the SENCER approach makes science more real, accessible, useful, and civically important (Carroll 2012).

We are introducing a creative activity we call photo-book of concepts included in three courses (physics, environmental chemistry, and climate change) at TWU. Each is a QEP-designated course at TWU; each is also a SENCER course. Maguire’s environmental chemistry course was, in fact, our first SENCERized course.

Photo-Book of Concepts

The photo-book project described here is an example of a learning activity which also includes the guided reflection concept. We teach students the laws and concepts of the subject matter in the classroom. Then students have a chance to independently think about what they have learned in the class and look around for illustrations of the concepts in their everyday lives. This activity encourages students to be more observant and search for examples in their world. This assignment allows them to freely express their interpretation of the subject and reflect on their learning. In this project students are required to take a few photographs (four to six) that represent the ideas in the subject matter. Students need to email two of their pictures to the instructor, each on a single slide in a presentation file format, along with a title and a description of what concept each picture represents. (See Figures 2, 5 and 6 for examples.) The instructor gives feedback to help students focus on successful ways of thinking about the assignment. After receiving the comments back from the instructor, final pictures in the same format are sent to the instructor along with their titles and descriptions. The instructor then chooses one picture from each student to exhibit on the wall of the classroom. At the exhibition, each student selects one picture (not their own) they find interesting and writes a reflective paragraph on why the photo grabbed their attention and how it relates to the subject matter. Finally, for a larger class the instructor chooses 15-20 representative pictures (the number is up to the instructor) that show different concepts in the course for printing on a poster. This poster could be displayed in the department and might even be presented in a larger scale on the campus or at conferences. For a smaller class, the instructor could divide students into groups and ask each group to make a poster presentation. More detailed instructions, examples of timelines, and detailed rubrics are included as an appendix to this article.

Physics

Physics appears to be an abstract and difficult subject to most students, especially if their major is not physics. Most students do not appreciate how important physics is and how relevant it is in their daily lives. The photo- book activity is a unique bridge between explaining physics concepts in a classroom and observing them in the real world. This activity was included for the first time in the algebra-based physics course in fall 2014, addressing one of the course SLOs, analyzing the relation of physics to the world around them. This activity was also aligned with the QEP SLO, effectively connecting classroom theories to real-world experiences through practical application of knowledge. There were seventy-five students enrolled in this class. As part of the class, students were assigned to start looking more carefully around them in search of physics and to capture physics principles in pictures or photographs. The idea behind this project was to change students’ perspectives about physics. This activity required students to take four photographs ( just to have a manageable number of pictures due to the large number of students) that represented physics principles. Pictures had to be photographs students captured personally (pictures taken online or from other sources were NOT accepted). For instance, they could take a picture of ice on a plant’s leaves. This picture can represent the heat concept in physics and how water needs to be 0° Celsius to become ice. This assignment made them look at their world carefully, reflect on what they learned in the class and find physics. As they started to develop an awareness of physics more and more, the instructor hoped they would want to learn more. Students had to email two of their pictures in a presentation file to the instructor to receive preliminary feedback on their pictures. A few weeks later, they submitted all four pictures. The instructor chose one picture of the four from each student to exhibit on the wall of the physics laboratory so that all the students could see their classmates’ work. At the exhibition, each student selected a photo that she thought perfectly showed physics and wrote a reflective paragraph about it. Since the students were asked to focus on just one picture, they were able to think about one physics concept more deeply and reflect their understanding in a written format. It was very interesting to read different students’ reflections about the same picture, and see how each student emphasized something completely different. For example, when we see a picture of an ice skater, we might see the concept of motion and Newton’s second law in the picture. However, there is also conservation of angular momentum in the motion of an ice skater. When ice skaters close their arms, they will spin faster. Furthermore, reflective writings also revealed students’ misunderstanding about a concept. Overall, displaying the pictures on the wall gave students an opportunity to share their experiences. Finally, we chose about forty-five most representative pictures showing different areas such as nature, chemistry, biology, and music and made a poster. This poster (shown in Figure 1) is displayed on the wall outside of the physics lab and was also presented at several university events (e.g. in the experiential learning showcase and at the Celebration of Science symposium at TWU). This poster was also presented at the 2015 SENCER Summer Institute in Worcester, MA. Moreover, presenting this poster to other students who were not taking physics sparked an interest in them and showed them physics in new places. This activity was also incorporated in the algebra-based physics course for fall 2015 and we will continue to include this project annually in physics classes.

Figure 1. An example of one of the posters made in the physics course.

Environmental Chemistry

TWU students enrolled in environmental chemistry during the spring 2014 semester were assigned to collect a series of eight photographs related to water issues, and the class will select the best for inclusion in posters to be displayed during Earth Week (April 21–25). Figure 2 shows an example slide illustrating the assignment, which was submitted as a presentation file with one photo per slide. Students were encouraged to take their own photos, but were also allowed to use photos found online in cases where they needed material that is not available locally in north Texas (e.g. ocean garbage patch, etc.). Several opportunities for photography were offered during field trips to various places in and around our community. After all the photos were collected, they were printed on copy paper and displayed on a large wall during one class period. Students then worked in small groups of two or three to collect the best examples related to their particular water issue.

Figure 2. An example slide illustrating the assignment, which was submitted as a PowerPoint file with one photo per slide.
Earth Week Poster Show

Once each group had selected appropriate photos, environmental chemistry students were instructed to tell their water photo story in pictures with minimal words as captions for the photos. Their assignment included making the information understandable for elementary school children who would be attending the reception held during the Earth Week exhibition. A grading rubric (see appendix) was devised for this assignment prioritizing content, organization, and grammar. Selected water photo posters are shown in Figure 3.

Figure 3. Selected water photo posters exhibited during the Earth Week poster show.

Children in some area elementary schools were also invited to create posters and the best were chosen by a group of their faculty to be included in the TWU Earth Week exhibition. One of the instructor’s goals in organizing this QEP- and SENCER-sponsored event was to increase the desire to attend college among school children participating, and to enhance their perception of TWU as a prospective institution to attend. The students and their families and teachers were all invited to the reception held on campus during the exhibition. The reception provided a time to share between the younger students and TWU environmental chemistry students. Selected children’s posters are shown in Figure 4. In addition, organizing the exhibition provided an experiential learning opportunity for two elementary education majors taking the environmental chemistry course.

Figure 4. Selected children’s posters created by children in area elementary schools and exhibited at TWU’s Earth Week poster show.
Climate Change

The Climate Change class in spring 2016 was assigned to take their own photos of climate change in the world around them. Their instructions were,“Photographs must be your own original work. They cannot show people’s faces and cannot include children. Each photograph must be in a common image format such as JPG or TIFF, and at least 1.0 MB file size in order to have adequate resolution if printed.” Images were uploaded into the course Blackboard along with a descriptive paragraph to explain the image connection to climate change, as a portion of the credit for the midterm exams. The instructor (Maguire) failed to require use of a presentation file format for submissions, which led to increased difficulty correlating descriptions with photos.

Consistent with the creativity shown in the physics and environmental chemistry courses, students in Climate Change were able to see impacts of changing climatic conditions in ordinary things around them. Photos included large hailstones from an unexpected and dramatic hail event in Fort Worth, a tree entangled in power lines, and an adult butterfly photographed in early January—unusual even for north Texas. A selection of photos and reflective writing descriptions are shown in Figure 5. Students were able to articulate that excessive precipitation, hailstorms, drought, technology impacts, and biological cycles outside of their usual timing were all perceivable manifestations of climate change. Maguire plans to create a climate change photo poster to promote the course on campus and to use when presenting the photo-book idea.

Figure 5A. A selection of photos and reflective writing descriptions submitted by students in the climate change course (A-C).
Figure 5B
Figure 5C

Assessment

We have employed direct and indirect assessments to measure students’ learning in this project. In the direct assessment, we used students’ photos to evaluate their understanding of the concepts presented in the pictures. The student learning objective for our QEP-designated courses was to effectively connect classroom theories to real-world experiences through practical application of knowledge. The photo-book assignment was used to measure this objective in all courses mentioned in this article. Grades on the photo-book of concepts tend to be higher than other coursework, indicating that students are able to connect classroom theories to real-world experiences, and that this activity was an effective tool in helping students achieve that connection. We have attempted to compare overall course averages using this assignment with classes that did not utilize the photo-book. Unfortunately, it is not possible to make a direct comparison because one of us was not teaching at TWU prior to using this assignment and the other made more than one change in her course design. No assessment data are available for the climate change course as it was still in progress when this article was written.

Figure 6. An example of a reflective writing piece; one student wrote this paragraph about another student’s photo. The student who took the photo saw equilibrium. This student saw potential energy in this picture. Both concepts apply to this scene.

Indirect assessment of students’ learning took place during the in-class picture exposition while students were sharing their ideas about other students’ photos and also in a reflective writing piece that they submitted later. (See an example in Figure 6.) Moreover, students’ comments in the course evaluations have demonstrated that this is an engaging activity for the students and further expands their understanding and appreciation of the subject matter. Unexpectedly, this project also leads students to learn more about their peers outside of class. Some students are passionate about rodeos, have traveled to exotic places, or have unique hobbies. In this experiential learning activity, students were more observant and searched for examples of the subject matter in their world. This assignment also allowed them to freely express their interpretation of the subject and reflect on their learning.

From course evaluation comments it is clear this activity was one of the students’ favorites. They were also surprised how much they had “learned by doing.” Here are a few of our students’ comments as written in the physics class evaluation forms:

  • The photo-book project, it was actually pretty interesting paying attention to a world filled with physics”
  • “This course forces you to apply the concepts that you learn to things in your everyday life”
  • “The teacher really shows that she cares and wants to work with I am very glad the homework allows multiple attempts because it helps me get through the thinking [process] no matter how long it takes. I enjoyed the Photo Book project.”
  • “The photo-book project was exciting and a fun way to learn the practical application of physics”
  • “Being shown how we could really apply what was be- ing taught in real life situations”
  • From their comments, it is clear that the photo-book assignment led students to “think well” and critically, as Pithers and Soden (2000)

One of the authors (Maguire) noticed when she included this project for Earth Week in her class she received one of the highest-ever course evaluation ratings from the students in that class; she has taught the course every semester since fall 2007. This higher rating might possibly be attributed to student motivation being higher since this project was a practical strategy to connect class concepts to students’ interests (Ambrose et al. 2010); also, the students discovered how relevant these ideas are to the world around them, a key part of learning to analyze and innovate ideas (Association of American Colleges and Universities 2007).

Interestingly, a student’s submitted photo can also give valuable insights into their understanding or misunderstanding of the concept they are trying to portray. One such example (Figure 5c) was a tree trunk with a large limb sawed off. The student stated that the image “signifies climate change because of the different ridges in the bark.” This provided an unexpected opportunity for faculty to clear up a misunderstanding.

The SENCER Student Assessment of Learning Gains (SALG, www.salgsite.org) allows students to rate how well specific activities help their learning. SALG data from five years (2007 to 2011) and more than 1300 instruments evaluating SENCER courses have indicated that this type of pedagogical approach enhances durable learning and a deeper understanding. Carroll (2012) reported that SENCER faculty are making more progress toward the main categories of pedagogical goals—those related to (a) understanding course content, (b) skill-building, (c) changing attitudes toward science, and (d) building habits of mind and behavior—than their non-SENCER colleagues. These surveys constitute about twenty-seven percent of the total SALG course evaluations in that period of time. Although we have not used SALG to evaluate the photo-book assignment, based on the reflective writing our students have done we expect that our students have acquired a deeper understanding and durable learning from this activity.

Conclusion

We developed the photo-book project as a creative learning activity in our courses to provide an opportunity for our students to develop a deeper understanding of the subject matter in our courses. We also wanted students to learn how relevant science subjects are to their everyday lives. After incorporating this project in various sections of three courses and one community outreach event, we believe the photo-book of concepts idea is a valuable tool for students and instructors alike. Our future plans include the use of the the photo-book assignment in courses we teach regularly and additional assessment through both our QEP program and the online SALG. Photo-books have great potential in terms of students’ developing enduring learning, but they are also a manageable workload for faculty. The project has been successfully completed twice in physics classes, and once each in environmental chemistry and climate change. After additional experience, we may choose to make the photo-book assignment an embedded assessment tool.

This project can be employed in larger or small classes. The physics class had seventy-five students, while environmental chemistry had twenty-two and climate change had only ten. Varying the number of photos submitted (four in physics versus eight in environmental chemistry) made it easy to adjust the workload. The project does not require any specific device or equipment; students only need a camera, and most of our students have been using their cell phones. It is essential to have a practical way of dealing with large file sizes. We have accomplished this using submission via email to a special email account (e.g., physphotobook@gmail.com) or uploading into Blackboard, either into a Discussion Board (visible to all students) or as a graded assignment link that was not shared with other students. All processes worked well provided students were required to place each photo and the accompanying text on a presentation slide for submission. This is necessary in order to keep it practicable. Other tools such as cloud sharing of files are available as well. In any case, faculty need to be sure that their selection fits the technology limitations of their situation.

In this assignment we seek to help students understand the subject through connecting it to interests already in their daily life. For example, a student who attends a rodeo to watch a family member compete takes pictures of a rodeo event and connects the rodeo to physics. Such a student could be more interested in physics in the way William James (1899) stated, “Any object not interesting in itself may become interesting through becoming associated with an object in which an interest already exists.”

Posters and oral presentations resulting from the photo-book activity have been shared during various meetings and symposia, both on and outside our campus. Faculty members in a wide variety of disciplines have shown an interest in this idea and have asked for our instructions, leading us to write this article in order to share our experiential model with a wider group of educators. We believe the photo-book of concepts will be a positive experience in whatever disciplines it may be applied.

Acknowledgements

The authors would like to thank the Robert H. Welch Foundation, Texas Woman’s University, the Department of Chemistry and Biochemistry, and the Quality Enhancement Plan (QEP) at TWU for their support. We also greatly appreciate mentoring provided by Dr. Richard D. Sheardy and Dr. Matthew Fisher. One of the authors (NMK) also would like to thank Sidrah Khan, physics teaching assistant, for her aid with the photo- book project, especially preparing the posters.

About the Authors

Nasrin Mirsaleh-Kohan received her Bachelor of Science degree in Physics at the University of Tehran. She came to the U.S. as a graduate student and earned her Master’s degree in computational Physics at the Bowling Green State University. In 2008, she finished her Ph.D. in Physics from the University of Tennessee (UT), followed by a postdoctoral fellowship at the University of Sherbrooke in Canada. Then she returned to Tennessee and was a postdoctoral research associate at UT. Kohan accepted her first tenure-track faculty position at Texas Woman’s University (TWU), Department of Chemistry and Biochemistry in May of 2013. She teaches algebra-based physics and calculus- based physics. Her research interests include surface-enhanced Raman scattering, interaction of anticancer drugs with DNA, negative ions, and radiation damage to DNA.

Nasrin is already a strong believer in using hands-on experiences to educate students. She is excited to have found a place that values her creative approach to teaching physics, as evidenced by her selection as a TWU Experiential Learning Fellow.

Kohan is co-advisor for the KEM Club (Kappa Epsilon Mu), TWU’s student chapter of the American Chemical Society. She has incorporated various civic engagement activities in KEM club such as the Thanksgiving food drive and Calculate it Forward. Nasrin is also part of the SCI-Southwest team at TWU and helps to convey the mission of SENCER in the Southwest region.

Cynthia Maguire earned her B.S. from Central State University in Oklahoma and two M.S. degrees-biology teaching and chemistry teaching, both from Texas Woman’s University. She remained at TWU and is now a Senior Lecturer in the Chemistry and Biochemistry department.

Ms. Maguire created the first SENCER course at TWU, Introduction to Environmental Chemistry: Global Perspectives, in the fall of 2007. She teaches primarily sustainability-related courses which form the core of an upper-division certificate program, Science Society and Sustainability. Cynthia is faculty advisor for Roots, a student sustainability organization at TWU; and she models civic engagement for her students through her leadership in the Native Plant Society of Texas, helping students be aware of sustainable, water- and habitat- conserving landscaping on their property and in their communities.

Maguire is also working on the SENCER dual poster project, researching how students learn to communicate disciplinary knowledge to others outside their specialty. Ms. Maguire is co-director of SCI-Southwest and is a SENCER Leadership Fellow. She was recently named a TWU Senior Experiential Learning Fellow. Her work has been published as a chapter in two ACS Symposium books about SENCER, and an article in The International Journal of Sustainability Education.

References

Ambrose, S.A., M.W. Bridges, M. DiPeitro, M.C. Lovett, and M.K. Norman. 2010. “What Factors Motivate Students to Learn?” In How Learning Works: Seven Research Based Principles for Smart Teaching,” S.A. Ambrose, M.W. Bridges, M. DiPeitro, M.C. Lovett, and M.K. Norman, eds., 66–90. San Francisco, CA: Jossey-Bass.

Association of American Colleges and Universities. 2007. “College Learning for the New Global Century: A Report from the National Leadership Council for Liberal Education and America’s Promise.” Washington, D.C. Available at: http://www. aacu.org/leap/documents/GlobalCentury_final.pdf (accessed July 2, 2016).

Bransford, J.D., A.L. Brown, and R.R. Cocking; National Research Council, Committee on Developments in the Science of Learning. 2000. How People Learn: Brain, Mind, Experience and School. Washington, D.C.: National Academy Press.

Bridges, P. 2001. Marking a Trail: The Quest Continues. A Centennial History of Texas Woman’s University. Denton, TX: TWU Press.

Carini, R.M., G.D. Kuh,and S.P. Klein. 2006. “Student Engagement and Student Learning: Testing the Linkages.” Research in Higher Education 47 (1): 1–32.

Carroll, S. 2012. SALG Results Show SENCER Faculty Achieve in Raising Higher-Order Learning Gains. SENCER eNews. http://serc.carleton.edu/sencer/newsletters/61795.html (accessed July 2, 2016).

———. 2010. “Engaging Assessment: Using the SENCER-SALG to Improve Teaching and Learning.” In Science Education and Civic Engagement: The SENCER Approach, R.D.Sheardy, ed. ACS Symposium Series, 1037: 149–198.

Eyler, J. 2009. “The Power of Experiential Education.” Liberal Education 95 (4) 24–31.

Fisher, M. Personal electronic communication. April 7, 2016. James, W. 1899. Talks to Teachers. New York: Henry Holt and Co. Karukstis, K. 2010. “A Horizontal Mentoring Initiative for Senior

Women Scientists at Liberal Arts Colleges.” Council on Undergraduate Research Quarterly 31 (2): 33–39.

Kelly, R. 2011. “Implementing High-Impact Learning Practices That Improve Retention.” Recruitment & Retention in Higher Education 25 (12): 6–7.

Kolb, D. 1984. Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs, NJ: Prentice-Hall.

Kuh, G.D. 2008. High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. Washington, D.C.: Association of American Colleges and Universities.

Lee, S. 2007. “Increasing Student Learning: A Comparison of Students’ Perceptions of Learning in the Classroom Environment and Their Industry-Based Experiential Learning Assignments.” Journal of Teaching in Travel & Tourism 7 (4): 37–54.

Lopatto, D. 2010. Science in Solution: The Impact of Undergraduate Research on Student Learning. Washington, D.C.: CUR.

Malachowski, M., and T. Dwyer. 2011. “Requiring Research for All Students in a Major: Opportunities and Challenges.” Council on Undergraduate Research Quarterly 32 (1): 23–28.

McGlynn, A. 2009. “Proven Pathways to Success for Minority Students.” Education Digest 74 (9): 42–45.

Middlecamp, C.C. 2011. “Sustainability! What, How, and Why Now for Our Chemistry Students.” Sustainability Symposium Series 1087.

Middlecamp, C.C. 2007. “Accentuate the Positive; Eliminate the Negative?” J. Chem. Educ. 84: 31.

Middlecamp, C.C., and A.D. Jorgensen, eds. 2009. Sustainability in the Chemistry Curriculum. ACS Symposium Series 1087.

Mirrer, K. 2010. “Designing New Technologies to Expand Knowledge and Information Sharing in Internship and Experiential Learning Settings.” International Journal of Technology, Knowl- edge, and Society 6 (4): 121–135.

Moore, D.T. 2010. “Forms and Issues in Experiential Learning.” New Directions for Teaching and Learning 124: 3–13.

Ong, M., C. Wright, L. Espinosa, and G. Orfield. 2011. “Inside the Double Blind: A Synthesis of Empirical Research on Undergraduate and Graduate Women of Color in Science, Technology, Engineering, and Mathematics.” Harvard Educational Review 81 (2): 172–208.

Pelligrino, J., N. Chudowsky, and R. Glaser; National Research Council, Committee on the Foundations of Assessment. 2001. Knowing What Students Know: The Science and Design of Educational Assessment. Washington, D.C.: National Academy Press.

Pithers, R.T., and R. Soden. 2000. “Critical Thinking in Education: A Review.” Educational Research 42 (3): 237–249.

Qualters, D.M. 2010a. “Bringing the Outside In: Assessing Experiential Education.” New Directions for Teaching and Learning 124: 55–62.

———. 2010b. “Making the Most of Learning Outside the Classroom.” New Directions for Teaching and Learning 124: 95–99.

Sheardy, R. 2010. Science Education and Civic Engagement: The SENCER Approach. Washington, D.C.: American Chemical Society.

Sheardy, R., and D. Burns, eds. 2012. Science Education and Civic Engagement: The Next Level. ACS Symposium Series 1121. Washington, D.C.: American Chemical Society.

Sloane, A. 2010. “Peer Teaching and Mentoring: The Case of Undergraduate Research Fellows.” Council on Undergraduate Research Quarterly 31 (2): 11–17.

Suskie, L. 2009. Assessing Student Learning: A Common Sense Guide. 2nd ed. San Francisco: CA: Jossey-Bass.

Texas Woman’s University. 2013. “TWU QEP Report.” http://www. twu.edu/downloads/qep/QEP-report-2013.pdf (accessed July 2, 2016).

Thiry, H., S. Laursen, and A. Hunter. 2011. “What Experiences Help Students Become Scientists? A Comparative Study of Research and Other Sources of Personal and Professional Gains for STEM Undergraduates.” Journal of Higher Education 82 (4): 357–388.

Download (PDF, 2.83MB)

Smart Moves: Making Sense of the Math in Environmental Data

Martha Merson,
TERC
Selene Gonzalez-Carrillo,
EcoTapatio
Ethan Contini-Field,
Harvard University
Meredith Small,
Harvard Law School

Abstract

Environmental organizers and their constituents, local community group members concerned about environmental health, operate in a context with rich and varied opportunities for learning about and applying mathematics to communicating environmental data. Prior to Statistics for Action, project partners—organizers at environmental non-profits—spent little time with group members analyzing data. Organizations did not have a method or protocol for considering the most effective way to frame findings for neighbors and decision makers. During the Statistics for Action Project, STEM educators and environmental organizers collaborated to use the context of environmental organizing as a platform for science and math learning. This article describes Smart Moves and Memorable Messages, two approaches that advanced goals for both math learning and organizing.

Rationale and Significance

Community members who live close to polluting facilities or toxic sites are often among the first to recognize the threats to human health. The historic pattern of placing polluting industries in or near low- income neighborhoods means that residents in these communities carry an unequal burden of negative health effects from environmental contamination (Faber and Krieg 2002). Bolstering the effectiveness of community groups organizing to clean up, curtail, or close down polluting operations has the potential to make a positive difference in human and environmental health. Local community groups that are well organized often prevail, gaining environmental protections and limiting negative health effects (Bullard 1993; Scammell and Howard 2013; see also annual reports for organizations such as Center for Health and Environmental Justice1 and Toxics Action Center2).

The Statistics for Action (SfA) project brought adult educators together with environmental organizers to create and test a set of activities and guides. The goal was to promote math and science learning for community group members involved in environmental campaigns in a way that would strengthen data-driven advocacy efforts. Organizing provokes concern and motivates concerned residents to action. Attention to science and math learning may happen as part of a larger organizing effort. Generally it is a means to an end. In spite of differing priorities, SfA project partners saw potential benefits to promoting math and science learning in the context of community organizing.

After a few false starts, SfA’s team of educators and organizers agreed on messaging with data as an area of focus. Typically when organizers and community members query experts and regulators, they are treated to a fire hose of information. Daunting amounts of data call for strategies for both making sense of data and communicating key points once they are identified. Thus, the project’s educators drafted a set of “Smart Moves” for math learning. Organizers embraced the norms for guiding mathematically rich conversations. The Smart Moves and SfA communication activities described below can be a useful starting point for other projects blending environmental advocacy and education.

Background and Questions

While observing community group meetings, science and math educators found that most groups struggled to make sense of technical documents such as environmental quality reports and standards for contaminants. Among these groups, three strategies for managing environmental data in technical documents were evident:

  • Avoid the data and analysis altogether; focus on other tasks
  • Find an expert to assist
  • Delegate data management to a group member with a science, math, or engineering background.

Given that international assessments paint a dismal picture of U.S. adults’ basic numeracy skills (Goodman et al. 2013), such strategies make sense. By opting out, delegating, or contracting out a careful look at the technical documents, however, groups often lose out on the opportunity for all of their members to use data in creative ways to advance their cause. What if a fourth strategy were viable? The project’s formative research examined to what extent environmental organizers who are trusted by local community group members could be conduits for science and math learning. Project leaders, partners, and evaluators were convinced that if provided with a robust set of resources, organizers could effectively facilitate math learning. Project partners envisioned that with guidance from an organizer, all members of a community group would engage with local environmental test results, and in the process gain increased confidence in communicating the processes and findings to neighbors and decision makers. Educators on the project team also hypothesized that group norms or ground rules would be critical to establishing trust and engagement for doing math in community group settings.

Context and Players

Over 50 organizers used draft versions of SfA’s activities and guides to promote understanding of environmental testing (final versions are available for free at sfa.terc.edu). Organizers worked in cities, towns, suburbs, and rural communities in North Carolina, California’s Central Valley, New England states, and Chicago, Illinois. Prior to applying for funding, math educators interviewed staff at nine environmental organizations leading a variety of campaigns seeking improved environmental quality and advocating for human health. Four of the interviewees recognized the potential benefits for increased understanding of environmental data among their staff and community members. The four organizations—Blue Ridge Environmental Defense League, Pesticide Watch Education Fund, Little Village Environmental Justice Organization, and Toxics Action Center—were named in the proposal for funding Statistics for Action and were active partners during the project. These organizational leaders then designated staff to participate in Statistics for Action professional development. Campaign issues ranged from methyl iodide use in California’s strawberry fields to containing the operations of a junkyard in Vermont. A number of issues were on residents’ minds: fumes from an asphalt plant, toxins from a medical waste incinerator and a galvanizing plant, water contamination from a recently closed textile or pesticide manufacturer. Interested readers can find stories and accompanying educational materials in the Change Agent issue on Staying Safe in a Toxic World (http://sfa.terc.edu/materials/changeagent.html). Toxics Action Center played a key role early in the project, giving feedback on draft versions of materials. It hired staff with experience in grassroots organizing, but initially just one had a degree in environmental science. Over time more organizers and organizations were recruited to use SfA materials through project advisors’ networks and conferences. The majority were college-educated young women, though organizers ranged in age from 23-60+. They played diverse roles on the project, recruiting community groups for pilot testing, supplying data sets, fleshing out stories, and reviewing materials. They offered feedback after using activities and participated in quarterly conference calls to share best practices. A core group of eleven participated in evaluation activities including surveys before and after being introduced to SfA and annual interviews.

Conditions under which organizers work are challenging. Unlike settings such as museums and nature centers which offer recreation, family-friendly learning opportunities, or entertainment, an environmental campaign asks adults to attend lengthy meetings and to volunteer for unpaid work. Meetings about environmental campaigns can be emotional. Residents are often angry about past wrongs and stressed about future outcomes and current impacts on their health. Meeting agendas may shift at the last minute due to newly released data or a change in hearing dates. Key group members may become ill or move away. In keeping with the characteristics of science and math learning in informal venues, challenges and opportunities arise from the compelling, learner-driven but unpredictable nature of learning opportunities in environmental organizing (Allen and Gutwill 2011).

New Practices for Facilitating STEM Learning: Smart Moves and Memorable Messages

Using the Smart Moves

SfA educators introduced a list of Smart Moves that set group norms when math-reticent or math-phobic participants would be asked to do math during a group meeting that could include mathematically confident peers. An educator with many years of experience drafted the first set of Smart Moves in the project’s first year. The Smart Moves were printed on 11”x17” paper and presented as a poster that could hang during a community meeting or workshop. At professional development sessions for environmental organizers in the first two years of the four- year project, SfA educators modeled using the Smart Moves both as ground rules, reviewed before any activities or taxing mathematics, and as facilitation strategies, guiding small group work. On an annual basis SfA’s materials were revised and updated. SfA educators reviewed and tweaked the wording of the Smart Moves at these junctures in order to be in synch with organizers’ sensibilities. Smart Moves were popular with several environmental organizers who posted them, read them aloud, or modeled them in their work with community members. During community group meetings and conference sessions, organizers regularly preceded activities on environmental data with a review of the Smart Moves. This practice was not mandated, but rather left to organizers, who generally posted and mentioned the Smart Moves at formal workshops. In meetings in living rooms with fewer than 10 people, explicit references to Smart Moves were less common.

Slow down; Talk it out

These moves invite exploring the implications of numbers. Even if several members of a group can quickly convert measurements in micrograms to parts per billion, the group should take time, slowing down to make sure everyone follows. In so doing, participants have a chance to absorb the full impact of the quantities. Smart Moves can also be shared in advance with experts, academics, and regulators scheduled to present to community members. When experts, academics, and regulators present to community members, “slow down” reminds them to pause as they rattle off numbers, letting the audience absorb a statistic before stating the next one. “Talk it out” reminds everyone that in this setting people can talk and laugh, work alone or with others, and clarify their thinking by explaining aloud to a peer.

Connect ideas to what people already know; Appeal to the senses; Show numerical relationships in more than one way

Relating to something familiar is an effective strategy for taking in new information (Willingham 2010) and makes ideas stick. Props as well as tactile experiences make a lasting impression. A Sweet’N Low™ packet conveys the weight of one gram more quickly than words can. A visual aid or physical object grounds understanding of amounts relative to one kilogram (especially handy in the world of milligrams per kilogram). Presenting numerical relationships in more than one way (using raw numbers, percentages, ratios in simplest terms, and approximate fractions as well as analogies and props) invites people who are not so proficient with mental math to visualize the relationships.

Verify

Choosing the right level of precision is something community group members talk about as they craft messages. Groups have to be strategic. They base their arguments on numbers from sources such as the Centers for Disease Control, annual reports or press releases from facility owners or proposers, or from an environmental impact statement. The stakes are high; credibility is on the line. If a community group or organizers disseminate information that is subsequently shown to be false, they are discredited and dismissed. The Smart Moves thus include advice to verify claims and findings.

Besides dispelling excuses about not being good at math, the Smart Moves made explicit the expectations for participating in an SfA activity. Smart Moves introduced a way of doing math distinct from the school experience common to most adults, in which silence was expected, dialogue discouraged, and reasoning out a problem with another student was interpreted as cheating. The Smart Moves can be used for problem solving in any domain. Below we explain how they were relevant to environmental organizing. Some organizers quickly adopted the Smart Moves, seeing them as a bridge or transition to activities. One organizer said:

“Having an environmental studies background doesn’t prepare you to be a teacher. As a quasi-teacher, it was very helpful to have the Smart Moves. They were a reminder to the community members of how to tackle the math and science, and taught everyone, including me, very quickly what to do and what not to do.”

Messaging Activities

Community groups’ main focus is to convince others of the need for action. Finding effective ways to share data on environmental conditions is clearly central to the work. The Memorable Messages activity sparks discussions on effective communication. It also encourages slowing down while modeling the use of different numerical representations. For this activity, everyone in the group reads one environmental fact and alternative versions restating that fact. The facilitator asks everyone (in pairs) to speak to the statements: Which one makes the most powerful impression? Which one is least impressive to you?

Once organizers facilitated Memorable Messages, they engaged group members in crafting and discussing alternate messages for the local campaign. When confronted with unwieldy quantities or units, one strategy is to scale numbers up and down until one finds a quantity in a unit that is easier to grasp or that uses some familiar element so that the unwieldy quantity makes a strong impression. The next step is to situate these quantities in a context/in a statement that makes it easier for the audience to imagine the impact. Participants stated and restated amounts and relationships, reflecting on the impression that each statement made.

For example, participants restated a fact about emissions from a proposed biomass incinerator. The permit stated that the facility could emit up to 246.8 tons per year of carbon monoxide, nitrogen oxides, and sulfur dioxide. With the population of the host county at hand, the group adjusted time and quantities, generating and critiquing versions of the original fact, such as

  • About a pound of carbon monoxide per person in the air all the time.
  • Figure out how much CO is in one cigarette. Say it’s like smoking X cigarettes.
  • Inhaling 13 pounds of each of these pollutants per day per person.
  • The amount per day works out to one can of toxic soup.
  • Imagine the fifteen pounds of carbon monoxide and other chemicals sitting on your head for 365 days a year. That’d have an effect on you!

Participants debated the pros and cons of each statement. One person said 0.13 pounds didn’t sound impressive. Fifteen pounds of carbon monoxide was impressive-sounding, but a “can of toxic soup” was easier to visualize. Discussions with attention to quantity, analogies, and scale became a routine part of environmental organizers’ work with community groups, often followed by conversations to further refine a statement and verify the claim with an expert.

Discussion

Notes from meetings and calls documented organizers’ enthusiasm and efforts as well as their resistance to facilitating certain activities. Among activities that were ignored or rejected were those that needed props, extensive set-up, had accompanying worksheets that organizers deemed elementary in look or content, and those that involved practice without a clear connection to moving the campaign forward. Project partners initiated a set of practices focused on messaging and communication, which were perceived as useful by organizers

and participants. When asked for feedback on a short survey, participants in workshops and trainings were positive and confirmed the potential impact of the SfA resources. Of the 187 surveys collected in the project’s final year, ninety percent of participants agreed that doing an SfA activity gave them more confidence to speak about the topic; sixty percent (n=183) felt confident in understanding the issue after the activity compared with twenty-eight percent before (Connors et al. 2013).

Organizers persuaded STEM educators that activity names and goals had to have a mission-based, campaign-focused objective. SfA’s educators worked to convince organizers that examining and incorporating data could strengthen the points that organizers were hoping to make through stories. In fact sheets, testimony, press releases, and in-person conversations, community members needed to weave numbers and stories into their communications. A community organizer commented on her transformation: “I tended to gloss over these issues before because they overwhelmed community members. Now I have a set of tools to address sorting out numbers, messaging, figuring out how to make sense of data and communicate risk.”

Collaboration resulted in more conscious, intentional use of data during meetings, leading community members to listen for sound bites they would use in communicating with others on environmental topics. The project’s external evaluators found that adding facilitating science and math learning to their repertoire of assistance to community groups was doable but not trivial for organizers. See Arbor Consulting Partners Evaluation of Statistics for Action Final Report (Connors et al. 2013) for more detail. There is much work to be done to understand who gets up to speed and how. We concur with Lemke et al. (2015), who call for assessment strategies that could capture know-how and know-who as well as know-that. Assessment should examine evidence that knowledge is being used and that this use persists, grows, and cumulates over relatively long periods.

Conclusion

Working alongside environmental organizations can have a huge payoff for STEM educators interested in reaching underserved audiences, including rural and inner city residents with limited formal education. Though community members may expect that educators will do all the math and understanding for them, the opportunities for collaborative teaching and learning are authentic, as all group members have relevant experience or knowledge to contribute, even though most do not have technical expertise or formal education in environmental science.

SfA was founded on the premise that all group members can contribute to the scientific and mathematical aspects of the work involved in environmental organizing. From its inception, the project has sought ways to expand the number of individuals investigating the math and science from one or two to the wider group. Smart Moves were a tangible signal that everyone could step onto the playing field. Our experience is that certain practices and approaches are a useful starting point for collaborations centered on environmental campaigns. SfA activities and resources are free and online (sfa.terc.edu), available to support environmental organizers who want to facilitate math and science understanding. The materials are relevant for educators and others interested in using environmental data sets in the classroom. Each activity includes a facilitators’ sheet with information like the skills addressed, suggestions for launching and debriefing the activity, and hints for preparation, as well as the most salient Smart Moves.

Organizers’ role in this transformative work is critical. We leave the last word to an organizer who benefitted from approaches generated by the SfA collaboration of organizers and STEM educators.

My general orientation before this project was that those sorts of fact and figures–we don’t really want to tell those in our story, people don’t understand them, we don’t have the tools to understand them…. 

I’ve had a small but fundamental shift in my orientation in thinking about and telling the stories of the campaign that we’re working on…. I think that in general, figuring out how to describe problems and solutions when it comes to pollution and environmental health using numbers and coming up with powerful messages and powerful details to help flesh out the story is helpful for campaigns (Connors et al. 2013).

About the Authors

Martha Merson led the Statistics for Action project at TERC, a not-for-profit STEM learning and teaching research organization. She is a long-time adult numeracy educator, co-author of the Extending Mathematical Power (EMPower) curriculum series for adult learners. She has worked both with environmental organizers and adult educators to equalize access to scientific information and math learning.

Selene Gonzalez-Carrillo worked as the Open Space Coordinator for Little Village Environmental Justice Organization before taking on the role of Outreach Consultant for Statistics for Action. She is currently pursuing her master’s degree in Environmental Education at the University of Guadalajara, Mexico.

Ethan Contini-Field was a research associate and curriculum designer for the Statistics for Action project at TERC from 1998–2013. He designed and field-tested activities and edited print resources for the project. He now works as an Online Course Developer for the Harvard University Division of Continuing Education.

Meredith Small was Executive Director of Toxics Action Center between 2009 and 2012, when she joined with Statistics for Action as a lead partner. Meredith spent over a decade as a environmental and political organizer before attending Harvard Law School, where she is currently pursuing her J.D.

References

Allen, S., and J.P. Gutwill. 2011. “Visitor Research and Evaluation in a Science Museum Context.” Presentation at Lesley University, Cambridge, MA.

Bullard, R.J., ed. 1993. Confronting Environmental Racism: Voices from the Grassroots. Cambridge, MA: South End Press.

Connors, M., M. Fried, and M. Taylor. 2013. “Evaluation of Statistics for Action (SfA): Final Report.” http://sfa.terc.edu/about/ pdfs/Arbor_final_SfA_Report.pdf (accessed June 23, 2016).

Faber, D.R., and Eric J Krieg. 2002. “Unequal Exposure to Ecological Hazards: Environmental Injustices in the Commonwealth of Massachusetts.” Environmental Health Perspectives 110 (Suppl. 2): 277–288.

Goodman, M., R. Finnegan, L. Mohadjer, T. Krenzke, and J. Hogan. 2013. “Literacy, Numeracy, and Problem Solving in Technology-Rich Environments Among U.S. Adults: Results from the Program for the International Assessment of Adult Competencies 2012: First Look” (NCES 2014-008). Washington, DC:

U.S. Department of Education. National Center for Education Statistics. http://nces.ed.gov/pubs2014/2014008.pdf (accessed June 23, 2016).

Halversen, C., and L.U. Tran. 2010. “Communicating Ocean Sciences to Informal Audiences: A Scientist-Educator Partnership to Prepare the Next Generation of Scientists.” The New Educator 6 (3–4): 265–279.

Lemke, J.L., R. Lecusay, M. Cole, and V. Michalchik. 2015. “Documenting and Assessing Learning in Informal and Media-Rich Environments” Cambridge, MA: MIT Press. http://lchc.ucsd. edu/MacArthur-Learning-Report_2012-12.pdf (accessed June 23, 2016).

Scammell, M.T., and G.J. Howard. 2013. “Is a Health Study Right for Your Community? A Guide for Making Informed Decisions.” http://www.bu.edu/sph/files/2015/03/HSG_5-14-2015_nocover.pdf (accessed June 23, 2016).

Willingham, D. 2010. “Ask the Cognitive Scientist: Is It True That Some People Just Can’t Do Math?” American Educator 33 (4): 14–29.

Download (PDF, 785KB)